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ABSTRACT

From theoretical studies of two-~phase flow of gas-particle mixtures in
rocket nozzles, the governing equations for two-dimensional and axisymmetrical
flows have been derived, Characteristic equations have been put into finite dif-
ference form and a mathematical model has been developed for a general interior
point in the supersonic flow field., The subsonic and transonic flow fields have
been investigated, To integrate the subsonic, transonic, and supersonic solutions,
a mathematical model will be programed for the IBM 7090 computer that will de-

termine nozzle performance for given nozzle contour and motor conditions.
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1, INTRODUCTION

Liquid or solid particles, or a combination of the two, exist in the exhaust
products of sclid propellants when powdered metals are used as fuel additives,
These additives are included in the propellant formula for several reasons, the
foremost being to increase the energy release of the propellant and to prevent
combustion instability.

However, several important deleterious effects occur when condensable
products are formed in the exhaust gases as a result of having metal additivies
in the propella;{xt.‘ Significant performance losses occur because the drag of the
gas on the particles is irreversible; the thermal-energy content of the particles
transfers to the gas by convection and, to some degree, by radiation, which re-
qQuires a finite amount of time., Since the particles pass through the nozzle very
rapidly, this energy transfer does not have time to take place completely, and
a significant amount of the thermal energy of the particles is lost, Impingement
of particles on the nozzle wall, affecting the heat transfer rates and causing
erosion of the wall, alters the internal configuration of the nozzle and results in
a change in performance.

To minimize these effects, it is necessary to predict the effects of various
geometric and gas-dynamic parameters on the performance of a gas-particle
mixture, The objective of this study was to develop an analytical technique for
determining the effects of particles on nozzle performance and design.

1I. SUMMARY -
This report presents a theoretical discussion of the two-phase flow of

gas-particle mixtures in rocket nozzles and shows the derivation of the govern-
ing equations for two-dimensional and axisymmetric flows, Characteristic

Page 1
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II, Summary (cont,)

equations are put into finite-difference form. A numerical solution procedure,
developed for a general interior point in the supersonic flow field, has been
programed for the IBM 7090 computer. Correctness of the computer progrém
has been verified through hand calculation of the numerical solution derived for
the IBM 7090.

A method has been developed for determining the subsonic flow field on the
basis of a one-dimensional sink-flow approximation. The transonic flow field has
been approximated by a power-series solution of the linearized system equations

for constant kinetic and thermal lags of the particles.

A method is then suggested for integrating the subsonic, transonic, and
supersonic solutions into a computer program with which nozzle performance for

given chamber conditions and nozzle contour can be determined.

This report indicates that status of gas-particle-flow studies as of February
1962. Since that date significant progress has been made on a program that in-
tegrates the subsonic, transonic, and supersonic solutions into one IBM 7090 com-
puter program with which overall nozzle performance can be evaluated. The pro-
gram enables study of several particle sizes and chemical species. The thermody-
namic and flow properties of the gas and particles are evaluated as a function of
temperature. Frozen or shifting chemical equilibrium can be studied by specify-
ing the appropriate speed of sound as a function of gas temperature. Studies can
be made at any point in the nozzle if a supersonic starting line can be determined
by the use of other techniques. Currently, this program has been limited to con-
ventional de Laval nozzles,.

III, TECHNICAL DISCUSSION

A, EQUATIONS GOVERNING GAS-PARTICLE MIXTURES

1. Basic Assumptions

Page 2
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II1, A, Equations Governing Gas-Particle Miitur‘es {cont, )

Derivation of the equations governing gas-particle mixtures
is given in Appendix A, These equations were derived on the basis of the follow-

ing assumptions:

a, The particles are spherical and all the same size,.

b, The total mass of the gas-particle mixture is constant,
c. The total energy of the gas-particle mixture is constant,
d. The internal temperature of the particle is uniform, and

the particle specific heat is constant,

e. The gas and particles exchange thermal energy by con-
vection only,

f. The gas obeys the perfect.gas law, has a constant
molecular weight, and has constant specific heats,

g All external forces except pressure of the gas and drag
of the particles are neglected,

h, The gas is inviscid except for the drig it exerts on the
particles,
i. The particles do not interact with each other,
Je The volume occupied by the particles is negligible.
Page 3
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III, A, Equations Governing Gas-Particle Mixtures (cont.)

2. Governing Equations

For two-dimensional (¢ = 1, o'v' = 0) and axisvmmetric (0= Y, dy= 1)

steady flows, the governing equations are:

pg(ug)x + pgl(vg)y + ug(-pg)x + vg(pg)y =9, g 1)
o v
PolBply PVl Fusleoi, + vpcp’p)y =g, —eb- (2}
g [ uglg * vg(gg)y IE App(ug-ﬁp)} ® ), -0 B
Py [ug (vg)y * vg(vg)y] +Ap (v -v) +(P) =0 | (4)
ugPgly + vg(Pel = o[ upley) +vyleg) ] - Ap B =0 (s)
up(up);‘ +vlu) = Au - uy) {6)
u (Vo) + vP(vp)y = Afv, -v) (7)
uplho) +vo(ho) = % AC(T - T ) | (8)
1=’g = pgRTg (9)
Page 4
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T = {f(h_) Tabulated,
P P

PP

2
=tvg -0 [t -u)

- f pit
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2
+ (vg-vp) +

C (T -Tg)]
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111, Technical Discussion (cont.)

B. CHARACTERISTIC EQUATIONS

By the use of the method of characteristics as discussed in Appendix
B and developed in detail in Appendix C, the characteristic equations for the above
system of quasi-linear partial differential equations (equation 1 through 8) were
found to be:

1. Along Gas Streamlines

dy . ‘g .

&L' u : ‘ (17,

udu +vdv |+dP = -A [u ~u)dx +(v - d] ‘ 1R)

"s[ g g ‘g 'g g = ~APpl(ug - up) (vg - vpl Oy VR
Ap_B dx

p"L _._E._ _PP__' (19)

2. Alorl Gas Mach Lines

L . : (20)
(u dy-v dx) [Ap Bdx - u dPg]-f Z{Ap [(u. -u )dy - (v -vp)dx]dx

v
4 [vgdug ugdvg- 0, —f— (s _dy-v dx) Jax + aP_ dy} 20 (21)
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III, Technical Discussion (cont.)

B. CHARACTERISTIC EQUATIONS

By the use of the method of characteristics as discussed in Appendix
B and developed in detail in Appendix C, the characteristic equations for the above

system of quasi-linear partial differential equations (equation { through 8) were

found to be:

1. Along Gas Streamlines
d v
&= - (17
g .
u_du +vdv]+dP = -A [ -u)dx +(v_ - d] 1R}
"g[ g8 '8 '8 g Pol (2g - up) (vg = vpl &Y '
Ap B dx
(19)

p_ﬂ__l_jsl’___

2. AloniGas Mach Lines

uv_ + 2/ 2
%? I g—avM-1. (20)

(ugdy -vgdx) I:Apdex - ugdpJ az{App |:(|l.g -up)dy - (v8 -vp)dedx

v

Y, -
+p [vgdug -ugdvy -0 —E—(u dy-v_dx) Jax + aP_ dy} =0

(21)
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III, B, Characteristic Equations (cont.)

3. Along Particle Streamlines
dx ~ T u
P
(23)
udu =A(u -u )dx
P P g p
(24)
d = A - d
vpdvp = Alvg-vp) dy
dh 2AC(T -T)d (25)
i T T -
(26)
d =0
\VP
(27)
\V =0
( P)Y pPuP
(28)
vy =.
( p)x 9PoVp

This system of characteristics is totally hyperbolic if the flow
is supersonic (M>1), and partially hyperbolic when the flow is subsonic. Hence,
the flow in the supersonic portion of the nozzle may be obtained by use of a nu-
merical procedure based on the above system of characteristic equations, How- '
ever, the subsonic and transonic flow must be obtained differently, since the

characteristics are only partially hyperbolic in such regions.
C. SUBSONIC SOLUTION

Because of the elliptic nature of the governing equations for gas-
particle mixtures in subsonic flow, a solution could not be obtained for the two-
dimensional and axisymmetric flow equations. In approximation, the subsonic
flow was assumed to be one dimensional. The following system of equations was
then derived (Appendix D), subject to the same assumptions as for the two-
dimensional and axisymmetric cases,
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III, C, Subsonic Solution (cont, )

du u u (29)
= A (—SE——B)
P
dh T T .
= -%—'AC (_%_B) (30
P
du =( ) ‘A:'L _d%%e_al (_,_E_)(..E_)—.E[I(y -1)AC(T - T
" 31)
+A{yg(ug-up) +up(ug-up)}] (
u2 | (32}
32;
j—
o 2
21.y g (33)
= - h -h )+ u -
(WP-) [( LS S
. (34
Pg = TomTen
g
Pg =g RT, (35)
w
po=__P (36)
P up area

'rp = f(hp) Tabulated, (37)

area = f(x) (38)

Page 8
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111, C, Subsonic Solution (cont,)

The first three differential expressions can be solved by techniques
such as the Adams or Runge-Kutta methods once starting values are assumed at
some location where the flow velocities are small and gas-particle equilibrium

may be assumed,

Since lines of constant properties in the subsonic portion of a de Laval
nozzle are concave downstream, the area in these equations should be based on the
spherical sector determined by the distance to the vertex of an equivalent cone
which is tangential to the wall of the nozzle at each point, This is equivalent to
a sink-flow solution, where the location of the sink varies with the position in

the nozzle and the slope of the nozzle wall, as illustrated in Figure 1,

~
~—=/
—/

—_—] x

- X —

~/
\ﬁ/
n

Figure 1. One-Dimensional Sink-Flow Model

Thus, the subsonic geometry would be specified by giving the wall location y and
slope 6 as a tabulated function of x. The area as a function of x is determined as
follows:
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111, C, Subsonic Solution (cont.)

x =x-K(1l-cos6) -(40)
area = 2nR 2 (1-cosB) (41)

By using the above relationship between x and .2rea, the subsonic

solution may be carried out to a point where the solution begins to diverge

because of the (—71—) term. To perform this solution, the total mass flow must
M~ -1

be estimated and must subsequently be corrected after the stavting line in the

supersonic region is determined.

w=w_ +w . (42)
g P

The gas mass-flow rate may be estimated from the chamber stagnation condi-
tions by assuming that the gas-particle mixture is in equilibrium and by using
the constant-lag one-dimensional analysis presented in Appendix E to determine
the velocity and density at some downstream cross section, such as the nozzle

throat, of an equivalent perfect-gas flow,

wg = pgl.’lg .area (43)

L Y -1 z]

’r‘:— -[t+E—m (44)
1

P Y -1 _2- ¥ -1

B-;Lo = [ 1 + M ] g {45)

Page 10
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III, C, Subsonic Solution (cont. )

2
2 YRT M
Yg T e _ (46)
7o+t
(y )
—_ v - 1)
(area) _ 1 r 2 Y -1 _2 - Z(Yg
(area)*hﬁl-§+1 (t+—5 M).J (47)
g
D
Bty - (48)
w
_&E_KZ ‘
D= 1+ Tvl o (49)
14 w_cC L
g P8
W ‘ c
1 .
) i
L= - :
1 +3 1 1-K
%;;(T) , (51)

®
If the nozzle throat is chosen as the reference cross section, then ﬂts M =1
» ,
and (area) ¢ " (area) . Equations (43) through (46) then reduce to

* 2
g
—
vy -1
* 2 Y
Pg = Pgo [‘::TT—] ¢ (53)
YG
i
2Y RT
“g‘ -.-[_'8__£°_] 8 {54)
Y +1) E
(\1g )
e }
‘ - 2y RT
ngpgoAt — : g ° : —i—E (55)
YB +1 {y +1) E
"Page 11
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III, C, Subsonic Solution (cont.,)

To evaluate the above expressions, a value for the kinetic lag, K, must be as-
sumed, With some experience, a reasonable average value of K between the

entrance and throat may be chosen. However, as a first approximation,

K may be chosen as unity. Since P is known, \'avp can be calculated when

g

W is known, Hence, all the parameters necessary for the subsonic solution can

be determined.
D. TRANSONIC SOLUTION

The one-dimensional sink flow solution does not converge near Mach 1,
and the method of characteristics cannot be used where the Mach number is less
than 1. Thus, a different approach was necessary in the transonic flow regime,
The particle kinetic and thermal lags were assumed to be constant, and the
analysis shown in Appendix E for a constant-lag one-dimensional gas-particle
mixture was used to obtain a modified specific heat ratio, ?g’ and Mach number,
M, of the gas, which includes the effects of the particles on the gas. The Sauer
transonic flow approximation discussed in Appendix F was then used to obtain the
gas velocity components in the supersonic regime where the Mach number is only
slightly greater than 1. The other gas and particle properties can then be found
along this starting line by the use of the following procedure. A starting line hav-
ing all properties known is available for use in the supersonic characteristic

solution,
The transonic flow regime was broken into two regions of constant

lag: the first from the end of the sink-flow regime to the throat, and the second

from the throat to the starting line. This is illustrated in Figure 2,

Page 12
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I1I, D, Transonic Solution (cont.)

\

Sink Flow / \ Supersonic Starti.
Line \ Line

// § ke |

t
L—— Region | hE-t Region 2

Figure 2. Constant-l.ag Transonic Flow Model

/

!

o}
b

This model permits different wall radii of curvature to be used upstream,
Py and downstream, Py of the throzt. In Appeadix F, the gas flow field

near Mach 1 is described by the following relationships.

(v + 1)a2 2
u(x,y)=aext+ 3 y (56)
(T+ 1) ax T+ 1) ,
Ve -\/(V+1)(1+b)y'
= . _B 8 &y
¢ IErY] Py (58
. ;\/_ +“1+b) (59)
(Yg ) P’ys
Page 13
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III, D, Transonic Solution (cont,)

where & = 0 for two-dimensional flow andd= | for axisymmetric flow, and u and v
are nondimensional perturbation velocities. The actual velocity components of

the modified gas flow are given by the following expressions containing u and v.

U (x,y) = 2% {1 + u) (60)
v (x,y) = a*v (61)
2 2
a*“= —B_ RT (62)
(Y+ 1) go

The actual velocity components of the gas in the gas-particle mixture are de-
termined from the following relationship, wherein E is defined as a one-

dimensional flow parameter with constant lag:

_1

2~
u=E u {63)

& _1
E2~ 64
vg v {64)

The value of K (one-dimensional particle velocity lag) used in Region 1{
(Figure 2) is determined from the sink-flow solution along the sink flow line,
When the entire gas-particle flow field is finally determined at the throat, the
value of K at the throat may be found. An average value on K between the sink
flow line and the throat can then be established, thus determining the Region 1
flow field more accurately. This procedure should be repeated until the average
value of K no longer varies from trial to trial, Region 2 can be solved in the
same manner by first choosing K as the value at the throat from the Region 1

solution, When the starting line is determined, an average value of K in
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111, D, Transonic Solution (cont,)

Region 2 can be repeated in the same manner as for Region 1, When the flow
fields in Regions | and 2 are completely determined, the gas velocity components

on the supersonic starting line are determined,

Next, it is necessary to make the total mass flow assumed in the sink-flow
solution compatible with the total mass flow in the supersonic region. This may
be done by integrating the total mass flow across the starting line to obtain the
supersonic mass flow., The assumed total mass flow in the subsonic sink-flow
solution should then be set equal to the calculated total mass flow in the super-
sonic region, and the entire subsonic and transonic solutions should be repeated
to obtain a new starting line and supersonic total mass flow, This procedure
should be repeated until the subsonic and supersonic total mass flows become

equal; the supersonic solution may then be initiated.

The particle velocity components in the transonic region may be found by
using the method of characteristics, since the particle streamlines, which are
also characteristics, exist in subsonic as well as supersonic flow. By choosing
several points on the sink flow line as starting points, the particle properties
along the streamlines through these points may be found by using numerical

techniques. The geometry for this procedure is illustrated in Figure 3,

Sink Flow ::::/ML‘"LKJ

M Q e_rsonlc. arting
l \ “""////X Line

— —
L I

Limiting Particle
Streamline

t

Figure 3. Transonic Characteristic Curves

Page 15



Report No, 0162-01{TN-16

III, D, Transonic Solution (cont,)

The derivation of the characteristic equations for the determination of the particle

properties along the streamlines is shown in Appendix C, where V_is the particle-
stream function,

& . B
X u
1
{65}
d =A -u )dx
up up (ug p)
{66)
d =A - d 1 ¥
vp Vp (Vg Vp) Yy
2 (67)
ze— AC (T _-T )dx :
updhp 3 ( b g)
{68)
day =0 4
WP

This system of equations can be solved by assuming that all variable coefficients

are average values and by putting the equations into the following finite difference
form suitable for computer evaluation:

v (69)
Ay _
p
Au = A _E__:_E__' ax
U.p i
V-V .
Av = A (_E_:—E—) Ay {(71)
v
P

(72)
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III, D, Transonic Solution (cont.)

q/p may be evaluated along the sink flow line to establish a value of Wp' which,
from equation (68), remains constant along the streamline, thus determining
‘l’p along the supersonic starting line. By using the procedure shown in Appendix

C, \]Ip along the sink flow line may be evaluated as follows,

- | 73
ay, = ), dx + (V) dy (73)

d = dy - v dx (74)
¥, =op, <upy p )

The value of Po along the sink flow line may be found by using the sink-flow solu-

tion, and up and vp may be determined by

u = Ku (75)
P g

v = Kvg (76)

where u_ and v_ are determined from the transonic approximation along the sink
flow line, and K is derived from the sink-flow solution along the sink flow line.
The value of Po along the supersonic starting line may be found by solving (74)

for pp.

ay
p:tr(ud pd
P py-vp x)

(77)

The values of Pg and pg along the supersonic starting line can be found by
numerically integrating the two characteristic equations which are valid along the

gas streamlines from the sink flow line to the starting line. This will establish
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III, D, Transonic Solution (cont.)

a system of gas streamlines in the transonic region in the same manner as the
particle streamlines illustrated in Figure 3 are established, By using the deriva-

tion of the characteristic equations in Appendix C, the equations necessary to de-

termine P_ and pg are

g
gy . g (78)
X ug
+vd +dP = - A - dx + -v d] (79)
Pel Ug%% * Vg vg] g pp[(“g up) dx + (v - Vi) dy
dP dp Ap Bdx
- g - Yg ' = =—B (80)
P P P u
g g g

ay . &
2y - - (81)
u
g
= A7 | (G -u v -V -plu A +v. A
APg pp[(u,g up) Ax +(vg vp) Ay] pg[ug ug vg vg] (82)
Ap _Bp Ax
ap = 1| sp -—B K _
g =72 & P % (83}
2 g8 §

Thus P_ and p_ can be determined along the starting line to the same order of

approximation as was involved in finding ug and vg.

Once all the flow properties have been found on the starting line, the total
mass flow across the starting line may be found by integration., If this total mass
flow is different from the assumed subsonic total mass flow, the subsonic total
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III, D, Transonic Solution (cont.)

mass flow should be set equal to the total mass flow through the starting line,
and the entire subsonic and transonic solution should be repeated. When the
total mass flow through the starting line finally equals the subsonic total mass
flow, the supersonic starting line is sufficiently determined to continue with

the supersonic solution by the characteristic method,
E. SUPERSONIC SOLUTION

In supersonic flow, the equations are totally hyperbolic, and the
characteristic curves are all real, Hence, the flow field can be determined by
a numerical technique based on the characteristic equations derived earlier,
As discussed in Appendix B, to obtain the solution in a region of a flow field, an
initial data line that is nowhere characteristic and along which all the flow pro-
perties are known must be determined. This line is the supersonic starting
line discussed in section III, D and must be determined in a region where the

Mach number is greater than 1,

Once the starting line has been determined, the supersonic solution
can be initiated, There are several types of flow regions within the supersonic
regime, and each must be handled differently., Points near the axis must be
treated in a special manner because of the term (1/y) in several of the equations.
Solid and free boundaries must satisfy the added condition of known flow angle
and known pressure, respectively, In the region between the limiting particle
streamline and the nozzle wall, no particles are present and the gas flow re-
duces to the case of rotational perfect-gas flow, The flow near a limiting
particle streamline must also be handled differently, since Pp = 0 on one side of
this streamline and is finite on the other side., The final type of flow is that of a
general interior point where none of the above special situations prevail., The
procedure for determining the flow in the neighborhood of an interior point is
developed in detail in this study. The types of points discussed are illustrated

in Figure 4,
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1IfI, E, Supersonic Solution (cont,)

The nozzle wall is determined by specifying x and y coordinates and
the slope at a discrete number of points, as illustrated in Figure 4, A left Mach
line is then forced to go through each wall point to determine the flow properties
at the wall point, as illustrated at point 3 for a solid boundary with particles and
at point 7 for a solid boundary with no particles, A right Mach line is then pro-
jected out intc the flow field from each wall point to continue the solution. The
size of the characteristic net can be regulated by varying the spacing of the

specified wall points,

The starting line is broken up into several discrete points from which
the characteristic solution is initiated. The size of the intervals chosen along the
starting line determines the size of the characteristic net near the nozzle throat
where property gradients are generally large, A relatively small interval is re-

quired along the starting line,

A characteristic coordinate system is indicated in Figure 4 for the
solution as it proceeds down the nozzle. As indicated, right Mach lines are
numbered from 1 through i, and left Mach lines are numbered from { through j,
Right Mach line 1 initiates on the starting line at the nozzle axis, and a right
Mach line of increasing number initiates from each point on the starting line up
to the wall, where a right Mach line then initiates from each wall point, Left
Mach line 1 initiates on the starting line at the wall, and a left Mach line of in-
creasing number passes through each point on the starting line until the nozzle
axig is reached., Left Mach lines then are initiated at each point on the nozzlé
axis where a right Mach line from a nozzle wall point intersects the axis, as
indicated in Figure 4. Thus, every point in the characteristic solution can be

specified by a coordinate (i, j) in the characteristic coordinate system.

Now that the characteristic nets in the supersonic region are

specified, it is necessary to develop a numerical solution procedure for each of
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1II, E, Supersonic Soluticon (cont,)

the points discussed above and an overall calculation scheme for determining
the flow field in the entire nozzle, Point 1, the general interior point, has been
considered in great detail, and the finite-difference equations necessary to

solve for such a point are discussed in section III, F,
F. FINITE-DIFFERENCE EQUATIONS

As discussed in Appendix C, it was necessary to solve the particle
continuity equation by a mass balance on the characteristic control volume. The
remaining equations were found to constitute a characteristic system that is
hyperbolic. The finite-difference form of these characteristic equations was
derived in Appendix G for the characteristic net shown in Figure 5. Points 3, 4,
and 5 were located by geometric considerations of the characteristic curves, as

discussed in Appendix H.

3

Initial Data
Curve

Figure 5. Interior-Point Characteristic Net
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III, F, Finite-Difference Equations (cont, )

To account for more than one size or species of particle, six discrete
particles were accounted for by introducing the streamline of each additional
particle as a characteristic curve along which the particle compatibility equations
are valid, Particle parameters appearing in gas compatibility equations were

summed for the six particles to account for their effects on these equations,

The equations necessary to calculate the gas and particle properties
at point 4 were derived as shown in Appendix G and are discussed in detail for a
general interior point in Appendix H, These equations include the properties at
point 4, which, as a first approximation, were assumed to be the same as the
properties at the intersection of the initial data line and the characteristic line
along which the particular parameter was evaluated. For subsequent calculations,
the properties at point 4 were considered to be equal to the results of the previous
calculations at point 4, In this manner, an iteration procedure was developed for.
the flow properties at point 4. A numerical example also was derived, as shown
in Appendix I, to demonstrate the procedure for determining a general interior

point,

G, INTERIOR POINT NUMERICAL EXAMPLE

To check the validity of the theory and the correctness of the IBM
7090 computer program, a numerical example was calculated for a general in-
terior point (Appendix I). A solid propellant containing aluminum was selected
as a sample for this calculation, The particles in the exhaust stream contained
aluminum oxide particles of six different sizes, The calculation was made for
a point 1 ft downstream of the nozzle throat and 0.5 ft from the nozzle axis in

an axisymmetric nozzle,

Tabulated values of f and g as functions of Reynolds number are

valid for spheres of any chemical species and size and may be considered to be
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111, G, Interior Point Numerical Example (cont.)

the proper relationship for future calculations. The values of Yg and cPg as
functions of gas temperature were estimated for this particular gas and should

be re-evaluated for future cases, The temperature-enthalpy relationship for

the aluminum oxide shown in Appendix I may be used for future calculations in-
volving aluminum oxide particles. The remaining flow properties were estimated
to allow a numerical caliculation to be made and are not indicative of the type of

flow field that would normally occur,.

The numerical-solution procedure shown in Appendix H was followed
in achieving both the calculated and the IBM 7090 compﬁter solutions. The re-
sults obtained through the two methods were in agreement, indicating that the
computer solution is correctly programed. The flow properties calculated at
the new point were all found to be of the correct order of magnitude and chang-
ing in the proper direction for flow down a diverging supersonic nozzle, There-
fore, the theoretical development appears accurate and the computer program

appears to correctly calculate the flow field at a general interior point.

IVv. CONCLUSIONS

The model developed in this Technical note for the two~dimensional and
axisymmetric flow of gas-particle mixtures appears to adequately represent
the actual flow field for spherical particles inthe exhaust gases. Such is the
case when the particles are aluminum oxide. However, not all particles are
necessarily spherical, or even approach it, and care must be exercised when

considering such flows,

The theory developed here, when completed, will enable the determina-

tion of the performance characteristics of conventional de Laval nozzles and
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IV, Conclusions (cont.)

unconventional nozzles, such as the plug nozzle, Particle trajectories and im-
pingement points can be accurately determined. Nozzle thrust and specific im-
pulse can be calculated, thus allowing nozzle evaluation studies to be made to

determine how to design nozzles for gas-particle mixtures,

V. RECOMMENDATIONS FOR FUTURE WORK

The work described herein is the result of a study of the flow of gas-
particle mixtures in two-dimensional and asixymmetric rocket nozzles, The
program is far from complete, howevery Further work needs to be programed

for the following specific items:

f. A more detailed analysis of the subsonic solution,
2, A more detailed analysis of the transonic solution.

3. Development of a solution procedure for the special cases of supersonic
flow mentioned in section III, E.

4, Development of a computer program for subsonic, transonic, and super-
sonic flow, uniting into one program the solutions relating to the entire
nozzle,

5. Analysis of particle trajectories,

6. Development of an analysis procedure for unconventional nozzles,

7. Consideration of heat transfer to the wall,

8. Consideration of chemical nonequilibrium in the gas phase,

9. A systematic computer analysis of the effects of nozzle geometry,

10, A systematic computer analysis of the effects of gas-dynamic parameters,

11, Correlation with an experimental program,

12, Re-evaluation of the theoretical analysis based on the experimental com-
parison,

13, Development of a complete method for designing any type of nozzle for
gas-particle systems,
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NOMENCLATURE

A,

ENGLISH SYMBOLS

ds

dx

Particle parameter in characteristic equations

Parameter in particle finite-difference equations

Area of one-dimensional gas-particle system nozzle

Speed of sound in a perfect gas

Speed of sound at sonic conditions

Coefficient of system of quasi.-linear partial -differential equations
Parameter in gas characteristic equations

Parameter in particle finite -difference equations

Coefficient of system of quasi-linear partial-differential equations
Parameter in characteristic equations

Drag coefficient

Parameter in particle finite -difference equations

Characteristic curve parametric representation

Coefficient of system of quasi-linear partial -differential equations
Specific heat at constant pressure of the gas

Specific heat at constant pressure of the particles

Constant-lag one -dimensional flow parameter

Vector drag force

Parameter in gas finite -difference equations

Parameter in characteristic compatibility equations derivation
Differential arc length in radius of curvature calculation

Differential distance along nozzle axis
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/

VI, A, English Symbols {(cont.)

5 5
[ -]

o
o

RO
=
=

=
o/

Nl 2

r

-
N

2 g ¥

My

Differential distance normal to nozzle axis

Total differential of a quantity

Constant-lag one -dimensional flow parameter

Vector force

Ratio of CD to CD for Stokes' flow

Coefficient in power series solution for @ (x, y) in transonic flow
Coefficient in power series solution for ¢ (x, y) in transonic flow
Coefficient in power series solution for ¢ {x, y) in transonic flow
Ratio of Nu to Nu for Stokes' flow

Particle heat-transfer film coefficient

Enthalpy of the gas

Enthalpy of the particles

One -dimensional particle velocity lag

Parameters in gas finite -difference equations

Thermal conductivity of the gas

Parameter in characteristic compatibility equations derivation
One -dimensional particle thermal lag

Notation for a system of quasi-linear partial - differential equations
Parameter in particle mass balance

Parameter in particle mass balance

Mach number

One-dimensional constant-lag modified Mach number

Parameters in gas finite-difference equations
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VI, A, English Symbols (cont.)

Slope of a line in geometrical characteristic net

Density of a particle per unit volume of particle

Nussult number

Index in system of quasi-linear partial-differential equations
Unit normal vector

Unit vector in ith direction

Gas pressure

Any property in finite -difference equations

Prandtl Number

Heat added to gas-particle system control volume
Parameters in gas finite -difference equations

Velocity vector

Gas constant

Reynolds number

Parameters in gas finite -difference equations

Particle radius

Parameters in gas finite-difference equations

Throat wall location in transonic flow model

Parameter in gas finite-difference equations

Gas temperature

Gas stagnation chamber temperature in one -dimensional model
Particle temperature

Particle stagnation chamber temperature in one -dimensional model

Time
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VI, A, English Symbols (cont. )

1]

Parameter in gas finite-difference equations, and nondimensional
x-direction velocity component in transonic flow

Perturbation x-direction velocity component in transonic flow
x-direction velocity component in transonic flow

x-direction gas velocity component

Gas velocity component in ith direction

x-direction particle velocity component

Particle velocity compohent in ith direction

Flow property in system of quasi-linear partial-differential equations
Value of ul after n + lth iteration

Value of ul after nth iteration

Parameter in gas finite-difference equations and nondimensional
y-direction velocity component in transonic flow

Volume of gas-particle system control volume
Perturbation y-direction velocity component in transonic flow
y-direction velocity component in transonic flow
y-direction gas-velocity component

y-direction particle-velocity component
One-dimensional gas mass-flow rate

One -dimensional particle mass -flow rate
Parameter in gas finite-difference equations
Coordinate along nozzle axis

Direction cosine of characteristic curve
Parameter in gas finite-difference equations

Coordinate normal to nozzle axis
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VI, A, English Symbols (cont.)

Ys
Yo
z

Radius of nozzle throat in transonic flow model
Direction cosine of characteristic curve
Parameter in gas finite-difference equations

Coordinate normal to x-y plane in nozzle

GREEK SYMBOLS

Mach angle, gas viscosity parameter, or Sauer-line velocity
gradient

Initial data curve in method of characteristics

Solution curve in method of characteristics

Specific heat ratio of the gas

One -dimensional constant-lag modified specific heat ratio
Finite difference of a quantity

Finite change along nozzle axis

Finite change normal to nozzle axis

Denotes two-dimensional or axisymmetric flow in Sauer's
approximation

Location of coordinate system in transonic flow

Slope of characteristic curve for two variables

Slope of characteristic curve for two variables

Slope of characteristic curve for n variables .
Angle of the tangent to a gas streamline

Angle of the tangent to a particle streamline
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VI, B, Greek Symbols (cont.)

A
n
llg
n

(o]

= |

g0o

i

Linear multiplying factors in method of characteristics
Angle of a line in geometrical characteristics net

Gas viscosity

Gas viscosity parameter

3.14159...

Gas density per unit volume of gas

Particle density per unit volume of gas

Radius of curvature in transonic flow
Indicates a summation

Denotes type of flow, two dimensional or axisymmetric
Denotes type of flow, two dimensional or axisymmetric
Angle for determining radius of curvature

Gas velocity potential function in transonic flow

Particle stream function

SUBSCRIPTS

Gas streamline

Gas property

Gas property at stagnation chamber conditions
Index

Index

Index

Midpoint of initial data line
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VI, C, Subscripts (cont.)

p

po

S
Stokes'
t

1

II

Particle property

Particle property at stagnation chamber conditions
Particle streamline

Stokes' flow regime where R St

Nozzle throat

Right running Mach line

Left running Mach line

SUPERSCRIPTS

Index for flow variables

Sonic conditions

Average value of a quantity, or a vector quantity

Velocity components in transonic flow model
OTHER

Vector operator

Total derivative with respect to time
Partial derivative with respect to time
Slope of a line in x-y plane

Natural logarithm

Partial derivative with respect to x

Partial derivative with respect to y

Relative velocity vector between gas and particle“'(zfg

Absolute value of a quantity
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VI, Nomenclature (cont.)

Fo

C

UNITS OF PHYSICAL PARAMETERS

Specific heat at constant pressure

Ratio of CD- to CD for Stokes' flow

Ratio of Nu to Nu for Stokes' flow

Particle enthalpy

Particle density per unit volume of particle
Gas static pressure

Prandtl number

Particle radius, based on spherical particles
Gas constant

Reynolds number

Gas static temperature

Particle static temperature

Axial gas-velocity component

Axial particle-velocity component

Normal or radial gas-velocity component
Normal or radial particle-velocity component
Axial coordinate

Normal coordinate

Exponent of gas-viscosity expression
Specific heat ratio of the gas

Gas viscosity

Coefficient of gas-viscosity expression
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Btu/lbm-°R
dimensionless
dimensionless
Btu/lbm
lbm/cu ft
1bf/sq in.
dimensionless
microns
Btu/lbm-°R
dimensionless
°R

°R

ft/sec

ft/sec

ft/sec

ft/sec

ft

ft
dimensionless
dimensionless

1bm/ft-sec

Ibm/ft-se~-(°R)®
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VI, F, Units of Physical Parameters (cont.)

Py Gas density lbm/cu ft
pp Particle density per unit volume of gas 1bm/cu ft
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APPENDIX A

DERIVATION'OF EQUATIONS: GOVERNING GAS-PARTICLE MIXTURES

A gas-particle mixture is described by the equations for conservation of mass,
conservation of energy, momentum balance, equation of state for the gas,
particle drag, particle heat balance, and pa.rt'icle enthalpy-temperature relation-

ships, This appendix derives these equations on the basis of following assump-

tions:

1. Only one particle size is present, or some type of integrated particle
distribution is performed, and the particles are spherical,

2, The total mass of the gas-particle mixture is constant,

3, The total energy of the gas-particle mixture is constant,

4, The internal temperature of the particles is uniform, and the
particle specific heat is constant,

5, The gas and particles exchange thermal energy by convection only,

6. The gas obeys the perfect-gas law, has a constant molecular weight,
and constant specific heats,

7. All external forces except pressure of the gas and drag of the particles
are neglected,

8, The gas is inviscid except for the drag it exerts on the particles,

9. The particles do not interact with each other,

10. The volume occupied by the particles is negligible,

The following derivations of the equations are based on studies by Kliegel:*

* Kliegel, J. R. and G. R, Nickerson, Flow of Gas-Particle Mixtures in Axially
Symmetric Nozzles, STL TM-7106-00Z23-MU-000; also ARS preprint 1713-61,
presented at the Propellants Combustion and Rockets Conference, April 26-28,
1961.
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Appendix A

To bégin the derivation, a control volume V enclosed by a surface A is

considered. This control volume is illustrated by Figure A-1 below.

'}

of

5y

Figure A-1 Control Volume for System Equations

The control volume is fixed in space and the gas-particle mixture flows through

it. The mass flux through the surface A is

f[ Py TR+ a‘p'?f] dA (A-1)
A

where p_is the mass of particles per unit volume of gas. The time rate of

change of mass in V is

dp, Op
f[o—tﬂ+°—tﬂ]dv {A-2)
\'s

A mass balance for V results in

rl op, 0P - - o=
J + av + p 9 °n+p qg”njdA=0 (A-3)
td

\4

>(\
. —
[ -]
o
o
©
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Appendix A

When the divergence theorem is used, the surface integral of Equation

A-3 can be transformed to a volume integral, and Equation A-3 becomes

p+d T +p g ]dV=0 A-4
‘J 1v(pgqg ppqp) (A-4)

Since this equation must be true for any size volume, it can be writter as

e 3] 2w 5] -

However, there is no mass interchange between the gas and particles in V;
consequently, each member of Equation A-5 must be identically zero. Thus,

the conservation of mass equation for V take the form

oF + di =0 {A-6;
t v 8 g = A -0)

0Fp | _
2o 1,3

1
(&)

(A-T)

The momentum flux through A in the ith direction is

J; [(pg ugi) q e (ppupi) ap-;] dA (A-8)

The time rate of change of momentum in V in the ith direction is

f[—g‘_ (psusi) o ( o pz)] av (a-9)

v
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Through the assumption that all body forces except the pressure of the gas
and the drag are negligible, there are no viscous or body forces acting on
surface A, and the only forces present are pressure forces. The component

of this pressure force in the ith direction is

- ngnidA (A-10)
A

A momenturn balance for V gives

d
Zr:w(m)

-L‘pgnidﬁ. = fA[ (pgugi) qem + (ppupi) qp-n] dA (A-11)

When the divergence theorem is applied to Equation A-11, the expression for

the ith component of the momentum balance becomes

o
f;[ ot ( pgugi + ppupi ) + div ( pgugi qg + ppupi qp) (A-12)

op
i

Since this equation must hold for any volume, the momentum balance becomes
op
(4 - -
. i . . + = -
5 (pgugi + Ppupl) + div (Pgugl qg + ppup1qp) u?‘-f 0 (A-13)
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The flux of enthalpy and kinetic energy through A is
' 1= |2 - .| 1=, 2 - = .
h + + |h_+ dA, and A-14;
f [ g 7| qg| ] Py Tgo7 [ o 2l ] AW 3 an (A-14)
YA
the time rate of change of enthalpy and kinetic energy in V is
0 { 2 9 { 2
\;f B ey (gt 2-| qgl H + BT |pp | byt 7|qp' ) ] dV (A-15)

The time rate of heat addition to V is
J‘ﬂs av (A-16}
\'

An energy balance for V gives

[3 ol {4 Lo 41507] ot [ e 23 o

{A-17)

2 .
' J:\ [h8+21'|as| ] pgqg.;“[hp ¥ élaplz] PPEP.F‘ da

fw?—["g(hg"%ﬁglz)“p(hwz‘rl%l"’-ﬂ]
v

+div[pg(hg+'Zi'laglz)qg+pp(hp+Zi'la.plz" ] dV = 0 (A-18)

Page 5




Report No. 0162-01TN-16
Appendix A

Since this equation must hold for any volume, the energy balance becomes
8t Bt [ps (hg+'2|qg‘ | * P hy + 7|
11— (2] = 11— 2] =
. . . . + -
+d1v|:pg(hg+2-|qgl ) qg-*-pp(hp -2-|qp| ) qp] (A-19)

With the assumption that the gas obeys the perfect gas law and has a
constant molecular weight and constant specific heat, the equation of state

of the gas can be written as

P =p RT A-20
g Pg g ( )

Next, a spherical particle of constant size is considered in the gas

flow field as shown in Figure A-2.

Figure A-2. Particle Momentum and Heat Transfer Model

Remembering the assumption that all body forces except for pressure of
the gas and particle drag are negligible, the only force exerted on the particle
is a drag force, Df, due to the relative motion between the gas and particle.

A particle momentum balance gives

= _d 4 3
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where mp is the particle density per unit volume of particle, The drag on a

spherical particle is given by
. 2 1 ——
ﬁf = CD 1rrp T Pg (ﬁ_q)\A ql (A-22)

h i q)=(§ -G
where (A q) (<:1g qp)

Equating Equations A-21 and A-22 results in

aq_ 3pg CD‘ _ -

To simplify the particle momentum and energy balances, the following relations

with Stokes' flow regime (where the Reynolds number is less than 1) are defined

as: /
C
D
f = (A-24)
(CD) Stokes
Nu
g = (A-25)
(Nu)Stokes

InStokes'flow regime, C. = 24/Re, and Nu = 2, Therefore,

D
24f
SN S w2t
e |&q]
Nu=z (A-27)
— T
aq g ( )
p _ 9 Aq
.o 3 a (A-28)
m r
pp
Page 7
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An energy balance for the particle gives

aQ 2

= - hd T -T A-2
; nrt T, - T ) (A-29)
k k g .
h=5FB Nu=E£ (A-30)

P P
. 4_3

Qp— m, gy hp (A-31)

dh B B ¢ _ ' ‘ A L
B3 B pe (Tp Tg) (A-32)

The temperature of the particle depends on its state; either a liquid, a liquid

in the process of solidifying, or a solid, and is uniquely related to the enthalpy,

T, = f (hp) (A-33)

The gas-particle system is now completely defined by Equations A-6,
A-7, A-13, A-19, A-20, A-28, A-32, and A-33, For adiabatic steady flow, the
two-dimensional and axisymmetric forms of these equations are obtained by drop-
ping all time derivatives and expanding the above system of equations. By let-
tingo = 1 for two-dimensional flow, 0 = y for axisymmetric flow, x denote the
longitudinal axis, and y denote the vertical or radial axis, these equations re-

duce to the following:

- . PV .
Pg (ug) «t Pg (vg)y + ug(pg)x tvg (pg)y =-0, g g (A-34)
- PV
Pp (up)x tep (vp)y + up(pp)x + Vo (pp)y = - Uy 2, P (A-35)
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Expanding Equation A-13 and combining with the expanded form of .
Equation A-28 gives |

p [ug(ug)x v (8 ]+App (o - u) +(P) =0 (A -36)
pg [ug(vg)x + vg (vg)y:] + App (vg - vp) + (Pg)y =0 {A-37)
9 K f . \
A= £ {A-38)

Mp’p

The particle momentum and energy equations become

Afu - u) (A -39)

up luphe ¥ vp up)y = g ~'p

up (vp)x + vp (vp)y = A (vg - vp) (A -40)
h) +v (h) =-2AC (T -T : (A 41

3 (gl + v, () = - 2 AC (T, - T )

Cc
= ?-&s- ‘EA“AZ:\ ‘

Expanding the system energy equation (Equation 19) and combining with
the gas and particle continuity equations, the gas equation of stzte, the
expanded form of the system momnientum equation, and the foliowing gas
enthalpy -temperature relationship gives

h =c¢ T + Constant (A-43)
g8 P8 &

u (P). +v_ (P) -az[u (Pl + Vg (b)) ] -Ap B =0 (A-44)
g " gx ‘g lgly g g'x " g Pgly 17 "Pp :
a2 = yR T | : (A 45}
g g : !

2 2 .2
= -1 - - + C(T_ -T A -46)
(vg = 0 [tug - u)” + (v -v)® +3C(T, - T ] (A-46)
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The gas equation of state and particle enthalpy-temperature relationship are

the same.

The equations governing a gas-particle flow field are thus found to be a
system of eight, quasi-linear, nonhomogeneous partial differential equations
of the first order, shown as Equations A-34, A-35, A-36, A-37, A-39, A-40,
A-41, and A-44, The constants A, B, and C in these equations are defined by
Equations A-38, A-42, and A-46. The gas equation of state is given by
Equation A-20, and the particle equation of state by Equation A-33.
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APPENDIX B

METHOD OF CHARACTERISTICS

The governing differential equations often reduce to quasi-linear partial-
differential equations of the first order for functions of two independent variables,
A quasi-linear partial differential equatidn of the first order is defined as one that
is nonlinear in the dependent variables but linear in the first partial derivatives of

the dependent variables. Such a system of n equations can be written as:*

a0 gl . o fi=t ... n )
Lizay o *hyy ey Tt 0 (j:l, ces n (B-1)

where the superscript j identifies a particular dependent variable, and the co-

efficients a .. bi" and < depend on x, y, u, . . ., w. When expanded, this

system of equations becomes:

= t . 2 n | 2
Ly=aju, ¥a,u+..va ul+b, L u;,1+c1=0\
1 2
L.=a n 1 2 n
;2 .21 u_ +a2? u ...+a2n ux+l:>21 uy +b22 uy +...+b2nuy +c2=0 f(B-Z)
: e : : : . . .
' . * . © . > . .
L =a ,u +a _u +,,, n l n
n nil x “n2 *35n U +bn1 uyd_"bnz uy +"'+bnn uy +cn=°)

When such systems are hyperbolic, the method of characteristics can be used
to obtain the desired solution, A treatise on the method of characteristics ap-
plied to fluid-flow problems has been written by Courant and Friedrichs, **
and this discussion is based on that treatise, The simplify presentation, the
theory will first be developed for a system of two equations, and then the re-

sults will be applied to systems of n equations.

* In accordance with accepted convention, when an index is repeated, the sum-
mation is carried out with respect to that index.
*% Courant, R., and K.O. Friedrichs, Supersonic Flow and Shock Waves, New

York, Interscience Publishers, 1948,
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The concept of characteristics arises from the following relationships.
A linear combination afx + bf of the two partial derivatives of a function f can
be considered as the derivative of f in a direction given by dx:dy = a:b. Figure

B-1 illustrates this point. In the figure, the curve C(0) is given in

g

c(9)
x =x (0)
y =y (9)

(x,y)

Figure B-1 Characteristic Curve

parametric representation as a function of some parameter 0. Thus, at any
point (x, y), xyand y, are the direction cosines of the curve C (0). If X
Yg: =a:bs then df/do = f_ (dx/do) + fy (dy/dv) = f X5t fy Y, andaf + bfy

is the total derivative of f along this curve,

Next, a system of two equations for the two dependent variables u(x, y) and

7(x, y) i8 considered:

L1=A1ux+B1uy+ C1 vx+D1yy+E1=0
. (B-3)
LZ=Azux+ Bzuy+ Cz"x+Dsz+Ez=°
Page 2




Report No. 0162-01{TN-16
Appendix B

In addition to these equations, there are two additional equations,

du

u_dx +u_dy
X y

(B-4)
dv

vxdx + vydy

that are valid for continuous functions having continuous derivatives, The
equations of B-4 are applicable to the functions considered here because these
functions are assumed to be continuous and have continuous derivatives., A
linear combination, L, of L1 and L2 is aought:

L=>\1 L1+)\2 L2=0 (B-5)
so that,in this differential expression for L, the partial derivatives of u and v
combine to give total derivatives of u and v in the same direction. Such a
direction, if it exists, depends on the point (x,y), as well on the values of u and
v at that point, and is called characteristic, Expanding L as indicated in

Equation B-5 results in the following:
(kiA1 + thz)ux + (kiB1 + sz?_)uy + (klc1 +)\Zcz)vx
+ ()\ID1 +\,D,) vy + (kiE1 + )\ZEZ) =0 (B-6)
Suppose the characteristic direction is given by curve C (¢) with direction
cosines xy dnd y; . Then, for u and v in the expression for L to be differ-
entiated in the direction of C (g) only, by the analysis above concerning afx
+ bfy, the following proportionality must be satisfied:

()\1A1 +)\2A2) : ()\IB1 +)\ZBZ) = ()\IC1 + KZCZ) : (7\1D1 + XZDZ) = Xy Vg (B-7)

since the coefficients of the derivatives u» uy, v and vy in L are given by the

respective members of the above proportion.
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If the functions u and v satisfy the differential equations L1 and L2 at

the point (x,y), the following two homogeneous linear equations for )\1 and )\2
are obtained:!

MA Yy =B%g) M (Ayy -B,%) =0
(B-8)
M(CyYy =Dy %) + 2, (Cyyy - D, %) = 0

For B-8 to have a nontrivial solution, the determinant of the coefficients of
)\1 and )‘2 in the above equations must vanish. ‘

(Ayyy - ByXgq) (A, - B, %)
=0 (B-9)

(Cyyy - Dy%g) (Cavy - DX

. )

)

2 X
(ACp - AC Ny, - [‘Atnz - ADy) +(ByC, - Bzci)J Yo

2
+(B,D, - B,D ) X =0 (B-10)

2 2
ay, - beqyo, + Cxgy = 0. (B-11)

If ac -bz > 0, then no real solutions ior-ig- = g’% exist, and the char- .
acteristic curves C (g) are imaginary. Differential equations that result
in imaginary characteristic curves are called elliptic. If ac -bZ = 0, one
real characteristic direction exists through each point, and the system is
called parabolic. If a.c-bz< » two real characteristic directions exist through
each point, and the system is called hyperbolic. From here on, only hyper-
bolic systems are considered. Introducing the slope

{=-2 = g% _ (B-12)
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Equation B-11 can be written as
ag? - 2bg +c = 0 (B-13)

which, for hyperbolic systems, has two distinct real solutions § + and § -.

Hence, the two characteristic curves C (o) satisfy the two ordinary differential

equations

Ft+ amd I ooc. (B-14)
Since the roots { + and ¢ - are functions of x, y, u, and v, the hyperbolic
character of the system depends on the particular functions u (x,y) and v
(x, y) under consideration., When a solution u (x,y) and v (x,y) is inserted
into Equation B-14, the equations dy/dx = §+ (u, v, x, y) and dy/dx = ¢-
(u, v, x, y) are two ordinary differential equations of the first order that
" define two families of characteristic curves, or simply characteristics, C+
and C- in the (x,y) plane,

In the case of two dependent variables u and v, four equations were
found relating U uy. A and vy.

"
o

L1 Aiux +Bluy + Civx +D1Vy + E1
(B-15)

L

n
o

AZux + BZuy + CZVx + Dzvy + EZ

u dx + u dy =du
x y
v dx + v_dy =dv
x y
By using Cramer's Rule for a system of n nonhomogenecus linear equations ir

n unknowns, the partial derivatives of u and v may be determined, Cramer's

Rule states that if the determinant of the coefficients of the unknowns, D, is
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D,
different from zero, each unknown has a unique solution given by ki = D—l- )

where D, is the determinant obtained from D by replacing the ith column

of b by the nonhomogeneous terms, and ki is any one of the partial derivatives
of u and v. In the present case of two dependent variables discussed above, D
is found to be

Ai IB1 C1 D1 (Aidy -Bldx)(Cldy -D1d'x)B1 D1
D = AZ B, CZ DZ = (Azdy - Bzdx)(CZdy - Dzdx) B, D2

dx dy 0 0 (dydx - dydx) 0 dy O

0 0 dx dy 0 (dxdy - dydx) 0 dy

(Aldy - Bldx) (Cldy - Dldx)

D = (ay)? (B-16)
(Azdy B‘de) (C,dy - Dzdx)

By comparing this solution for D with Equation B-9, it is found that D = 0 along
characteristic curves, This result.is valid along only the characteristic curves.
Thus, the solution for ki = Di/D wiil not exist along the characteristic curves

unless Di = 0, thus placing kiinto the indeterminant form:

k Di 0

i 9 (B-17)
Solving the determinants Di = 0 results in a system of compatibility equations
equal in number to the number of partial derivatives in the original system of
equations, The number of compatibility equations that are independent equals
at most the number of dependent variables in the original system., By observing
the nonhomogeneous term in the equations of B-15, it can be seen that these com-
patibility equations will contain only total derivatives of u and v. Thus, the system
of partial differential equations has been replaced by a system of total differential

equations valid along the characteristic curves.
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So far, a fixed solution u (x,y) and v (x,y) has been assumed. How-
ever, the equations of B-15 no longer depend explicitly on this solution,since
all the coefficients are known functions of x, y, u, and v, By a slight change
in interpretation, the equations of B-15 and the compatibility equations can
be considered as a system of four equations for the determination of x, y, u,
and v. Replacing the original system (equations of B-3) by this character-
istic system is the basis of the method of characteristics.

The method of characteristics can now be extended to a system of n
lifferential equations by analogy to the above case of two equations. Equation
B-1 for such a system is repeated here as

. 3 i = 1 n
auJ auJ 1 3 e ey
Li= aijax— +bij6}'_ +Ci 0 jJ=1, ..., n

As in the case of two equations, the following equations result from the con-

tinuous nature of the assumed solution for uJ:

duwl = udex + uy',dy G=1, ..., n) (B-18)
Again, a specific solution u’ is assumed, and curves C (0) are sought so
that a linear combination )‘iLi of the differential equations can be formed

in which differentiations occur only along the curves C (o).
L = )\iLi = )‘lLl + )‘ZLZ + ... +)\nLn =0 (B-19)

Expanding L as indicated in Equation B-19 yields the following:

1

|
+ ()\1b11 +A,b,, +.. +kn.bn1) u

(N2 +hza, v +ha ) 2°21

X

. 2 2
+ ()\laiz Ay, . ”‘nanz) w "+ O‘ibtz ”‘zbzz +.. ”‘nbnz) uy (B-20)

n
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As in the case of two equations, the cogfficients of ui and u’ must be in direct
proportion to the direction cosines .xo.and Yo of C (o) if L is to be differentiated
only along C (¢). This proportionality takes the form

(kiva“ +X2a21 +.. +knan1) : (Kib“ +k2b21 +.. +ann1) =Xyt Vg

(kiati_2 +K2a22 +.. +)\nan2) : (X1b12 +X2b22 + .. +)\nbn2) =Xy} Yy B-21)

()‘18'1 +)‘2 Zn ‘ +)\nann) : (}‘ibln +)‘.2b2n t.. +>‘nbnn) = xo‘ : %‘ ,

. .

Equation B-21, when rearranged with)si as the unknown, takes the form

Xl(ailyc - b“xo) +)s2(a.21yc - bZi'xo') +.. +Xn(an1yd - bnlxq) =0

Mylagoyy = bypXy) ¥R a5,y - byoXp) +ooth (a oy - b %) =0 (B-22)

Mlag vy = bynXe) tR(a, v - byXe) +o ot (@ g - by Xg) = 0

which can be written as

X (a, )=0 (j=1, ..., n) (B-23)

1Jy6 1J 0
For the solution of the system of equations defined by Equation B-23
to be other than zero, the determinant of. the coefficients of ')‘i must

vanish:
- =0 -
| (g, - b7 | (B-24)
When expanded, the determinant takes the form

a Yd 1n 0') .

(a21Yg = P21%g) (222Yg - P22¥g) -+ (22nY0 - Pan™e’| _ (B-25)

(annyd “bony )

(@)% = Py1%g) (@7 - bya¥g) ooe (

- bnixu) (a

(anlya n2Yg an'xa) cee
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The expanded determinant results in an algebraic equation of the nth degree
for g = Yy /xd = dy/dx, giving n roots tn’ which determine n characteristic
directions., If all n roots are distinct and real, the system is totally hyper-
bolic, There are then n families of characteristics Cn (o) satisfying the

ordinary differential equations

gi. =t (B-26)

n

each family covering the domain of the (x,y) plane under consideration.
As in the case of two equations, the following equations relating the x

and y partial derivatives of u’ were found:

. . i={, .., n
L oza . +b.uw +c =0 (From Equation B-1)
i ij x ijy i j=1, .., n

u;]( dx + uJy dy = du’ (j=1, .., n) (From Equation B-18)

Again, by using Cramer's Rule for the system of 2n linear nonhomogeneous
equations in 2n unknowns, the partial derivatives of uj can be determined,
By denoting any of the partial derivatives of uj by ki' the solution becomes
ki = Di/D’ where D is the determinant of the coefficients of the équatiom of
B-1 and B-18, and Di is the determinant obtained from D by replacing the
ith column of D by the nonhomogenous terms. Exactly as in the case of two
equations, D is found to be the same as the determinant of Equation B -24,
which is equal to zero, and defines the characteristic curves Cn (). Thus,
for ki to ex‘:. Di must be zero, a_.nd a system of 2n compatibility equations
in terms of the total derivatives u) are obtained, of which at most n are
independent. Thus the general system of n partial differential equations for
n variables has been replaced by a system of n total differential equations

valid along the n characteristic curves, C. (o).

Next, the initial value problem is formulated for the above system of

hyperbolic differential equations. Assume a curve l‘o is given in the (x,y)
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plane, end continuous values of uj arbitrarily pre‘scribed a.longI‘ . Then, the

problem is to determine, in the neighborhood ofI‘ » a solution uJ of the system

that takes on the prescribed initial values along I‘o. By replacing the original

system by the characteristic system, the system reduces to total differential

equations along the characteristic curves. In general, these equations are non- -
linear, and each is coupled with some of the others. For this reason, a solu-

tion by a numerical iteration technique becomes necessary. The compatibility -
equations, each valid along one or more of the characteristic curves, can be

put in finite difference form, and the equations of the characteristic curves

themselves can also be put in this form. Then, by moving alohg a characteristic

curve, the initial values of uj along I‘o can be extended into the domain enclosed

by the outermost characteristic curves passing through the initial data curve

Fo' By continuing in small steps along the length of ' o' & new curve,l"l. can be

obtained with all the values of uJ determined along th1s curve, as shown in

v? -
— c3

Figure B-2.

Initial
Value
Line

! given

Figure B-2. Characteristic Initial Value Line and Solution Net

Page 10



Report No, 0162-01TN-16
Appendix B

The above considerations result in the concepts of domain of dependence
and range of influence., The domain of dependence of a point P is the region in
the (x,y) plane, bounded by the outermost characteristics passing through the
initial data line, in which the solution of the initial value problem can be
established. The range of influence of a point Q on the initial value line is the
totality of points in the (x,y) plane which are influenced by the initial data at
point Q, This regionconsists of all points whose domain of dependence contain
the point Q; therefore, it is the region between the two outermost characteristics
passing through the initial point Q. The range of influence and domain of de-

pendence are illustrated in Figures B-3 and B-4. c

A

T
X » X
Figure B-3 Figure B-4
Domain of Dependence Range of Influence

For a solution to be possible, the initial data line cannot be characteristic
at any place unless initial data are given along two intersecting characteristic
curves. Several types of domain with different types of initial data lines can be
solved; however, only the domain in which the initial data line is nowhere char-~

acteristic is of interest in the present discussion.

By means of the method of characteristics just described, many com-
plicated systems of partial differential equations can be solved, if the system
is found to be quasi-linear and hyperbolic. These conditions are frequently

encountered in fluid flow problems.
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DETERMINATION OF THE CHARACTERISTICS OF
A GAS-PARTICLE MIXTURE

The complexity of the equations describing a gas-particle mixture requires
that a solution be obtained by other than conventional methods., The system of
eight first-order, quasi-linear, nonhomogeneous, partial-differential equations
can generally be solved by using the general theory of the method of characteristics
as outlined in Appendix B. After an initial effort to solve the entire system of
eight equations, it was found that four distinct characteristics curves did exist,
but only seven distinct compatibility relationships were found. Therefore, the
particle continuity equation was solved separately by the introduction of a particle
stream function. The resulting relationship was then considered to define the
particle density pp throughout the flow field, since there was no compatibility
equation describing the variation of pp. The salution was then found for the particle

continuity equation as follows:

-

1 -
(Ppip) x 5 OPpvp)y = O (c-1)

The definition of the stream function was chosen as

wp)v = 9PpYy (C-2)

z-0p VvV c-3
(V) =-opv (C-3)
where 0 = { for two-dimensional flow, 0=y for axisymmetric flow, x is the

longitudinal axis direction, and y is the vertical or radial direction for

two-dimensional or axisymmetic flow, respectively, The definition of a particle
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streamline is
dy _ 'p (C-4)
dx a
p
The total derivative of‘l’p is
da¥ =V ax+ Vay (C-5)
P X Yy
d¥ = 0p u dy Op v dx C-6
p Ppp™Y TP - (c-0)

Along particle streamlines, therefore,
av¥_=o (C-7)

The remaining seven equations form a system of equations that can
be solved by the method of characteristics. The characteristic curves are
found to be the gas streamline, the particle streamline, and the two conven-
tional gas Mach lines. For supersonic flow, the system is totally hyperbolic,

and for subsonic flow partially hyperbolic,

Since the seven quantities under consideration are assumed to be

continuous functions, there also exist seven equations of the form

du = u_Jdx + o Yy G=1,..,7) (C-8)

J

where u” representsu_,v ,p , P_, up, vp, and h . Thus, there exist

g & 8 8
the following fourteen equations for the determination of the fourteen

partial derivatives of the seven dependent variables:
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poligh * Pglvgly + uglpgdy + vole) = -0 1%3 (C-9)
Pgug(u g)x + pgvg(ug)y + (Pg)x = - App (ug - up) (C-10)
Py g Vgl * Py Vg Vgly + (Pl = - Ap (vg - v,) (C-11)
a (P + v (P) - a? aglPyly - a® volog) = Ap B (C-12)
a () b vola) = Al -a) (C-13)
37y + Vpltply = Al - v) | (C-14)
ayho) + v () = - ac (T, - T)) (C-15)
(aghds + (a ) dy = du (C-16)
(vohdx + (v ) dy = dv_ (C-17)
(pg)xdx + (pg)ydy = dpg (C-18)
(P), dx + (P ) dy = dP_ (C-19)
() dx + (a ) dy = da_ (C-20)
(vohydx + (v ) dy = dv (C-21)
(h ) @x + () dy = dh, (C-22)
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where
A= s (C-23)
A m Tr_2 -
PP .

2 2 2
B=(y -1 - - +4¢c(T_-T 24
(vg-t) [y -u )P v -v)Peder -] (C-24)

C

c=f ££ (C-25)

The gas and particle equations of state are

P =p RT ‘ C-26
g Pgg (C-26)

Tp = f(hp) (Tabulated) (C-27)

As discussed in Appendix B, the characteristic directions themselves

are found by solving the determinant

dy

TR IR TR I (C-28)

where aij and bij are the coefficients of the x and y derivatives of the

seven dependent variables in the seven original system equations,

- j j -0 (i =
Li—aijux +bijuy +ci-0(1-1,.., 7) (C-29)
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Pg'g
0 p_u 0 0 0 0
g'g
o o0 -a’u o 0
gk
o6 o o0 0 u 0
P

0 o 0 0
Pg g

v o ©o o o 0
Pg'g

o pv., O t 0 0O

g'g
o o0 -atv. v, 0 O
g '8
o o o0 0 v, 0
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When Equations (30) and (31) are used, Equation (28) becomes

dy dy
Pg Tx Py (uga;-vg) 0 0 0 0
(C-32)
(u W dy
dy
0 - 0 -1 0 0 0
Pg( g Ix g)
2 y dy =
0 0 -a (u K'Vg) (u a;-v) 0 0 0 =0
dy
0 0 0 0 (up I vp) 0 0
dy
0 0 0 0 0 (up ="V ) O
0 0 0 0 0 0 (wI_v)
dx
Expanding Equation (32) and solving for g—;:- gives
Z/ 2 3
2 uvt+aw M -1
dy dy _ _8 dy =
(ug 3% - vg) 3"?'_11%7_1_— (upa;-vp =0 (C-33)
8 .
From Equation (33), seven characteristic directions were obtained, the
following four being distinct:
a) Gas streamlines,
d v
Y -_& (C-34)

dc« u
g
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b) Gas Mach lines,

c) Particle streamlines,

dy _'p
dx ~a_
p

To determine the compatibility equations that must be valid
along the characteristic curves, the determinant of the ';:oefficients of
the 14 equations of the complete system was modified by replacing one
column at a time by the nonhomogeneous terms, ¢, The system of

Equations (C-9) through (C-22) in matrix form is shown in Figure C-1,
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All blank spaces represent zeros, By replacing the columns one at a time with
the nonhomogeneous terms, seven compatibility equations were obtained, each

valid along a particular characteristic curve., Along gas streamlines:

dy Vg
T " T (C-37)
g
du +vdv |+dP = -Ap [ (u -u)dx + (v -v )d c-38
Pg [ug Vg T Vg Vs] g "p[ (ug-up) (vg-vp) YJ ( )
dP d Ap Bd '
g _y., _Pg _Ppo (C-39)
P g Tg'%

Along gas Mach lines,

2/2
uv + aNM -1
='uz Z

u -a

g

(C-40)

1y

.(u dy - vgdx)[Apdex - ugdP8 ] + a.Z {App [( ug - up) dy

g

v

- (vg - vp, dx ]dx t ey [vgdug - ugdvg-ay 1;!_ (ugdy-vgdx) ]dx + dPgdy} =0 (C-41)

Along particle streamlines,

dy _ :_i (C-42)
updup = A(ug - up)dx (C-43)
vpdvp = A(vg - vp) dy (C-44)
udh = - Z ac (T, - T) dx (C-45)
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These seven compatibility equations were found when solving for the

following partial derivatives:

(ug)xt

(u ) :

gy

(C-38) on gas streamlines and (C-41) on gas Mach lines

(C-38) on gas streamlines and (C-41) on gas Mach lines

(C-38) on gas streamlines and (C-41) on gas Mach lines

(C-38) on gas streamlines and (C-41) on gas Mach lines

(C-39) on gas streamlines and (C-41) on gas Mach lines

(C-39) on gas streamlines and (C-41) on gas Mach lines

(C-41) on gas Mach lines

(C-41) on gas Mach lines

(C-43) on particle

(C-43) on particle

(C-44) on particle

(C-44) on particle

(C-45) on particle

(C-45) on particle

streamlines

streamlines

streamlines

streamlines

streamlines

streamlines
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When the flow is supersonic, (M> 1), the system is totally hyperbolic,
The original system of eight partial differential equations can be replaced by
the system of seven total differential equations valid along the characteristics

and by the definition of the particle stream function Vp'

In the subsonic flow regime where M <1, the gas Mach lines are imag-
inary., However, the gas and particle streamlines are still real and can be
used to determine the gas and particle properties if the gas velocity components

ug and v_ can be determined by some other procedure. A simplification of the

original system is thus obtained even in the subsonic and transonic flow regimes.

Page 11




Report No. 0162-0{TN-16
APPENDIX D

GENERAL ONE-DIMENSIONAL FLOW OF A GAS-PARTICLE MIXTURE

In the application of the method of characteristics to the supersonic portion

of a nozzle, a starting line is required across the flow field in the supersonic re-

gion,

To determine the starting line, the solution for the entire flow field in the

subsonic and transonic portions of the nozzle must first be derived. Since all the

characteristic curves do not exist in the regions with Mach numbers less than 1,

a different approach is necessary in these regions.

The only feasible approach is a general one-dimensional analysis in the sub-

sonic portion of the nozzle and a constant-lag one-dimensional analysis in the

transonic portion of the nozzle.

The general one-dimensional analysis is discussed

in this appendix, and the constant-lag analysis is discussed in Appendix E. The

assumptions that pertain to the following discussion are the same as those made

for the axisymmetric case with the additional restriction of one-dimensional flow.

Mass

Momentum -

Energy

Figure D-1.

L T~

./

x, Area

x + dx, Area + d (Area)

General One-Dimensional Gas-Particle Model

In the one-dimensional control volume shown in Figure D-1, a mass

balance results in

W = u Area D-1
Pgig (D-1)

A = u_ Area D-2
W Pplp ( )

g
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A momentum balance on V yields the equation

pgug(ug)x + Ppup(up)x + (Pg)x =0 (D-3)

An.energy balance on V resuits in the relationship

1 2 1 2
Wo [C (T -T_ )+ = u ]+w [h-h + :]=o D-4
e [CogTgTgo) * T % p [ PpPpol * T Yp (D-4)
where the subscript o derotes chamber stagnation conditions, The equation of
state of the gas is

P RT {D-5)

g Pglyg

A momentum balance on a spherical particle yields the relationship

u_{(u ) = .g_ ._C_.]D_pg_
P’ p'x p rp (ug - up) I ug upl (D-6)
and an energy balance on a spherical particle results in
3h
u(h) =« ———(T_-T)) {D-7)
P PX mp rp P g
where
CD = f (Re)
2r u -u P
Re = p I ug p I g
g
k_Nu
h =
T
p

The equation of state of the particle was expressed in tabular form by the
relationship
Tp =f (hp) (Tabulated) (D-8)
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When the system energy equation (Equation D-4) is solved for the gas temperature

Tg in terms of the remaining flow variables, the result is

W u 2
_ P 1 {2 1
Tg - Tgo "% . CT. [(hp B hpo) t7 Y ] -2 TL (D-9)
g P8 _ rg

By means of the gas and particle continuity equations, the gas equation of state,

u rea
the system energy equation given in Equation D-9, and the multiplier __.g..ﬁ__.
w

the system momentum balance can be rewritten as g

RT

_-G-ug (M2 -1) (u)y + == [(u ; up)(up)x ] £ (Area)_ -
(D-10)

As in the axisymmetric case, the following definitions apply:

C C Re
f= D = D and (D-11)
C 24
( D) Stokes
Nu Nu
g = 2 (D-12)
.(Nﬁ) Stokes ¢
Equations D-6 and D-7 can then be solved for (up)x and (hp)x
du u -u
N e (D-13)
P
dh 2 T -T .
a;E = - o AC (—-%s-) where (D-14)
P
Page 3
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f
a-2 e
z 2 and (D-15)
m 1T
PP
g Sp
c=£ P._rg . (D-16)

Substituting Equations D-13 and D-i4 in Equation D-10 results in
dug _ 1 Y d{Area) \ilp Yg 1 [ 2 (y_-1)AC(T_-T )
dx M2 -1 Area dx - Wg up aZ 3 YWy ) P g

oa g o) s ) ]} (D-17)

a=v RT
Yg & g

Solving Equations D-1 and D-2 {for Fg and Pp results in the following

relationships
v.vg
p. = (D-18)
g u_ Area
g
W
P
Pp © U Atea {D-19)
p

The gas pressure is found from the gas -equation of state

P =zp RT {D-20)
g g 8

The shape of the nozzle determines the function

Area = f (x) (D-21)

the cross-sectional area of the nozzle.
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Thus, the general one-dimensional flow of a gas-particle system is

represented by the following system of equations.

dup I L -
ax ( 0 ) (D-22)
P
dh 2 T -T
% g e (270
p
du_ _ 1 o u d (Area) _ (ip_’ _‘fg_ 1 [2 v.-1 ac T
MZ_1 ’ 1area dx Wg uy a2 3 \'g P g
2
+ A { vglagmug) uplugug)} J (D-24}
a = ng T8
M2= _gz_
a
Area = f (X) (Given) {(D-25)
o
C= -;,g. {D-26}
u_f
A,; 4 5 (D-27)
m_r
PP
f=f (Re) (Given)
g = 8 (Re) (Given)
W
_ g (D-28)
Pg = v Atea
- WP {D-29%
Pp = u, Area .
Page 5
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Tp = f(hp} (Tabulated) ? (D-30)
P i i 2 1 ugz
T 2T - —— [huh 4 ]- q .
g go Wg Cog ‘ ) po) 2 p =z “pg {D-31)
P = RT {D-32) *
g Pg 7 g
={ (T d ¢ =£f{T) Tabulated) (D-33) .
Yg ( g) an pg { g { a
a
ug =M Tg (D-34)
In Equations D-22 through D-34, the quantities
Pr, m_, T, Wg, Wp_, Tgo’ hpo’ R, W . and ¢ are all given constant parameters.

Equations D~22, D-23, and D-24 can be solved numerically in the
subsonic regime for u_, h_, and ug by any of several standard techkniques,
such as the Adams' or the Runge-Kufta method, provided that starting
values are assumed at some location where the flow velo:ities are small
and gas-particle equilibrium can be assumed. The remaining flow variables,
Pg’ pp, T. s Tg’ and Pg’ then can be calculated from Equations D-28 through
D-32, respectively. Thus, the entire one-dimensiorel subscnic flow field is
determined up to some value of M1, KNear M = {, the numerical solution

begins to diverge as a resuit of the (—;— ) term in Equation D-24.
M=4

Because of this divergence, it becomes necessary to consider a constant
lag one-dimensional gas-particle system to obtsin solutions in the transonic

regions.

Page 6




Report No. 0162-01TN-16
APPENDIX E

CONSTANT-LAG ONE-DIMENSIONAL FLOW OF A GAS-PARTICLE MIXTURE

To obtain a transonic solution for a one-dimensional gas-particle mixture,
it was necessary to assume that the particle kinetic and thermal lags are con-

stant throughout the transonic regime, The particle kinetic and thermal lags were

defined:
u
=B, 0<Kg 1 . (E-1)
4
T T
L- 8RB, o<cL=1 (E-2)
go g

It was also assumed that the particles do not change phase in the transonic

portion of the nozzle. The particle equation of state was then expressed as

(hy - hpo) = gy (T - Tyo) (E-3)

go
where Tgo = Tpo in the chamber,

The temperature of the gas, T g’ was found to be

2
. u
T =T . 2 L [(hen )+du2].! (E-4)
8 @80 W cpg[ppo ?p] T c,
Substituting Equations (E-1), (E-2), and (E-3) in Equation (E-4) results
- in the following expression for T :
a ?
D
T = T - —L- '5
8 go 2 €og (E-3)
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where: D =

The system momentum balznce was found to be

RT, W 2 R . RT,
-13 f iy - : 1 | - — - : { =
T EME- 1) fu ) bt [(ug Bou ) ta), - 5 (hp)xJ TRTey(ATea), = 0
g g g Pg (E-5)
-0)
Substituting Equations {E-1), (E-2}, {E-3), and {E-5) in Equation {E-6} gives,
for the system momentum balance,
d(Area) (‘V[z 1 d.ug Eo
TTArea) U0 TH oW V=T
y 2
Mmé = EM® {E-8)
\.VD - <,
E=1+5 5 {K [y (1-K) +1<J+ (v -1) —E_ .LD} (E-9)
W g g c
g PE
The particle momentum belance was found tao be
dup ug -,
ax_ = A .—u__.:— (E-lO}
p
Substituting Equation (E-1) in Equation {E-10) gives
du
= A “'.__122_’ (E-11}
K

Page 2



Report No, 0162-01TN-16
Appendix E

The particle energy balance was found to be

dh 2

a-x-E ==3 AC (E-12)
Substituting Equations (E-1), (E-2), (E-3), and (E-5) in Equation (E-12)
gives

du

(1-
=5 AC 1 L) (E-13)
Pl
Equating Equations (E-11) and (E-13) gives
1
L= (E-14)

c
' pl | 1-K
Equation (E-14) determines the relationship between the particle thermal

and kinetic lags in a constant-lag situation.

Equation (E-5) was solved for the ratio Tgo/Tg to give

:,£2=[1+_(f§:.)__ m2 ] (E-15)
g |
V= 1+l -0 (E-16)

Vg

Equation (E-7) was considered at the geometric throat where

d(Area) _ d (Area) dx = 0
(Area) = dx (Area) -~
du du.

and £ = E& gﬁ_ >0
g g

Therefore Mf -(1) = 0 and M.t =1 at the throat.

(E-17)
Page 3
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Therefore, from Equation (E-15} at the throat, where conditions are
denoted by *,

* 2 ;
g 7.+ go
(vg )

Equation (E-7) was integrated in the following manner:

du

d (Area) _ 2 4y _& (Equation E-7)
Tea u
g
2
Eu
=2 _ 2.8
M" =EM" = 7
g B
2
{ u
Tg - TgO - 2— C—g-—— D
pPg
- 2 Eu 2
M =
1 u_é
Y R(Tgo- Zc D)
Pg
d
d(Area) Eug uS - du
{ Area) u l ug
YR(T, - > D)
g go Cpg
In A = -(VL'IT D In Tg - In ug + Constant

Evaluating the above expression between a general point and the throat
where Tg = Tg* and M = 1 gives

Y +1

i (IE )

(Area) _ 1| 2 ;. LMZ) 2fvg - 1)
SE A 1 AT 2

Page 4

(E-18)

(E-19)

(E-20)




Report No. 0162-01TN-16
Appendix E

The gas continuity equation, the perfect gas law, and the system
momentum equation were combined to determine the following pressure

relationship:

W _=p u_ Area

g g8
d d
_pg + ._ug + d(Area) = 0
) u Area
g g
P_=p RT
g g g
dP dp dT
.P._S_ - - =0
g Pg g
du
d(Area) (MZ 1) g
Tea u
g
Combining the above gives
dPg _2 dug dT
— + M T TJ =0
g 4 g

In the same manner as Equation (E-7) was integrated, Equation (E-24)
was solved and evaluated between ti.e general condition and the stagna-

tion chamber condition where Pg = Pgo and Tg = Tgo to give

P 7. -t —E
P2 = [1v B M%] Vg !

Page 5
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Substituting Equations (E~15) and (E-25) into the perfect gas law gives

-1 T
Pgo i} [1+ Vg _2] ¥,
Pg

Combining the gas and particle continuity equations gives

P

1 Wp
P = r o Pg
g

The solution of a one-dimensional gas-particle system under

constant-lag conditions is thus given by

(y, +1)
vy -1 2 2{y_ -1)
e [l [0 B
M |\ly +1

x|
(o]
n
r
—
+
*4'
1
4
[\V]
| N—

g
|
l“‘
+

<]
0Q
4|
b
4
o

b
]
]
m
+
.y
[ 7]
—
m—(
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MZ:=EM?
ugZ =M2 2
a.Z =YgRTg
up=Kug

go g
_ 1 Wp
Pp TR T e
g
L= C‘
1 J1-K
{43 {_K_)
Y. =1+ -1
Yg vg -1 ¥
- i _
1+-‘52 K
D= i
w cl
142 B g,
] g “pg |

[

gas-dynamic relationships with Yg and M replaced by the modified parameters

specific heat ratio and Mach number,

Page 7
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(E-32)

(E-33)

(E-34)

(E-35)

(E-36)

(E-37)

(E-38)

(E-39)

(E-40)

(E-41)

Equations E-28 through E-31 are seen to be the one-dimensional isentropic

Yg and M, respectively, A gas-particle mixture in a constant-lag nozzle with no

phase change can thus be considered as a perfect gas with appropriately modified



Report No, 0162-01TN-16
Appendix E

From Equation (E-11) it is seen that, for constant lag nozzles,
dag A (1 - K)

= ° ” = Constant

Thus, the assumption of constant lag imposes the restriction of constant
axial velocity gradient. Such a condition is approximated in the throat region of _
most nozzles, The solution for constant-lag flow, therefore, shows that in the
throats of most nozzles the gas-particle mixture may be treated as a perfect gas

with the appropriately modified specific heat ratio and Mach number,
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TRANSONIC FLOW APPROXIMATION

By using the analysis of a one-dimensional gas-particle mixture under
constant-lag conditions, it was found that the gas-particle mixture could be
treated as a perfect gas with appropriately modified specific heat ratio and
Mach number. The solutions for transonic flow can therefore be obtained in the
same manner as for a perfect gas, since the two-dimensional gas-particle flow
in the throat region can be treated approximately as a one-dimensional flow, and
the actual specific heat ratio and Mach number of the two-dimensional flow can be
approximated by the modified parameters 73 and M based on the one-dimensional
approximations, Several methods have been proposed for analyzing transonic
perfect-gas flow, Methods proposed by Sauer, Oswatitsch and Rothstein, and
Kliegel (References F-1, F-2, and F-3, respectively) appear to be practicable,

Sauer's method will be used until a better solution is available.

Figure F-1 illustrates the geometry of the model considered by Sauer,

7|

Sonic Line

/

/
S € o

W////

Figure F-1., Transonic-Flow Model
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The assumptions made for the model are as follows:

1. The gas is a perfect gas.

2. The flow is irrotational.

3. The flow is two-dimensional (& = 0) or axisymmetric (d = 1),
4. The specific heats are constant.

By combining the continuity, momentum, and speed-of-sound equations for

such a flow field, the following equation was obtained:

2 2

-3%-253%¢6a =0 (F-1)

<<
t

~ 2 ~2 ~
ux(a -u )+vy(a

where T and ¥ are the x and v components of velocity, and a is the speed

of sound. The energy equation is

é—(ﬁ 2 +v Z) + h = constant (F-2)
(_8_ ) ( ’ +a %= constant (F-3)
Defining ..' as the speed of sound where (u + 32) = az, Equation (F-3)
hecomes
vy +1
a2=( g ( )( ) (F-4)

The dimensionless velocity components are defined by

~

_a v

Page 2



Report No, 0162-01TN-16
Appendix F

In terms of G and -‘;, (F-1) becomes

- - Yy, -1 _ "7'1\— - —_—
ngx-uz- £ 7‘:|+v ri-( ;UZ- ZJ UvuU
- 7g+1 7 yg-i y

T oy
‘ +6[14J——(U2+V2) =0

<]

g + 1 (F-6)

By limiting the investigation to the vicinity of the sonic condition where U~ { and

V=0, Uand ¥ can be expressed in terms of perturbation velocities as

U=1+u and V = v (F-7)

where u and v are much smaller than {. In terms of u and v, Equation
(F-6) becomes

-1 ' 7 -1, Pl
u [Zu+uz+!ig :vz]-vy[___z_ -Z(Yj_liu-'/Luz+vz_|

: +1 +1 v.o+1 Y
Yg Y8 Yg Yg+1
2 (Yg - 1 Y - ! 2, 2
+ = . “y (l+u)v-b[_ -2  a - (u +v)].;i=0
+ +1 v 1! v
Vg Yo gt Vgt
(F-8)
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As x and y approach zero, u and v approach zero, However, u should not
a?proach zero. Equation (F-8) shows that as x and y approach zero, ; and

vY approach zero. From the symmetry about the x axis, uy approaches zero
at y = 0, Substituting these limiting values into Equation (F-8) and neglecting
terms of higher order than the first in quantities which approach zero as x and

y approach zero, Equation (F-8) becomes

- A4 _ ; _

(Yg+1)uux'vg'6;7'0 {F-9)
For irrotational flow,

Ou Ov {F-10)

oy ax

Hence, a velocity potential ¢ (x,y) can be defined such that

u = ¢x and v = ¢y | (F-11)

The velocity potential can be defined as a power series in y, containing

only even powers of y because u is symmetrical about the x axis.

¢ (x,y) =f_ (x)+{, (x) yz+f4 {x) y4+ (F-12)
L ! 2 ! 4

u (x,y)=¢, =f (x)+ £, (x)y" +£, Ix)y" + ... (F-13)

v (xy) =9, = 2, (x) y + 4, (x) i, (F-14)

where the primes denote ordinary differentiation with respect to x.
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Substituting the power series for u and v into Equation (F-9), equating

the sum of like powers of y to zero, and solving for fz (x) and f4 (x) gives

(¥, + D'ty
£, (x) = - (F-15)

(Yot 1) (£5'f," + £, ")
f_4(x)=_Y£

2 (3 +d) (F-16)

Wheny =0, u(x,0) = f(') {x), where u (x, 0) is the axial perturbation -
velocity distribution along the x axis. If u (x, 0) is known, fz (x) and f4
(x) can be determined, and the flow field would be established., For a

linear axial perturbation velocity distribution,

u(x,0)=ax {F-17)

Z(1+05) , (F-18)
v, +1)2a’

8(1+b)(3+d) {F-19)
F + e,

ulx,y)= ax+ —2—mm— y +... (F-20)
2(1+3d)

<
®
<
|
0Q
+
+

. (F-21}

—_—————e Y
(1 +8) 21 +8 ) (3 +d)

~2

The critical curve where M = 1 and (2 2) = a"'2 can be

determined as follows:

2

VB °+¥V " =za%x"=z=U""a*x" + v ° ax

u=0 {F-22)




Report No. 0162-01TN-16
Appendix F

Therefore, the critical curve is found from Equation (F-20)} to be

Vg t1)e
X = = o e y
2(1+8) (F-23)

To locate the coordinate system in the nozzle, let y at x = 0 be equal

toy,, and solve for € from Equation (F-23):

y +1) e
e- . _'8 . 2 | (F-24)
2 (3 +d) '
€ is the distance from the geometrical throat downstream to the gas

dynamic throat where M = 1.

Next, by using Figure F-2, determine the curvature of the nozzle
wall at the narrowest cross section. Curvature is defined as the change
of direction of the tangent to a curve per unit distance along the curve,

and the radius of curvature is denoted by Pg*
0

Figure F-2. Radius-of-Curvature Model
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tan ¥ = M ~ v
i +u
dv '
i d tan T = .
-_— = .
Pqy ds ( )ys s,ys
(¥, +1) a°x 7. + 1)% 3 3
V e eeeee———e— y + _s__ y
(1 +d) 2(1 +8 ) (3 +d)
dv _  dv dx ~ av
98 8x ds Bx
- 2
X _Ngrthe
x (1 +d)
. (7, +1) a?
Pe (1+8) s

Until now, u (x, 0) was assumed known, and a nozzle-wall curve was

calculated to give this u (x,0). Now, by inverting the above equations,

u (x, 0) can be determined from the wall properties at the narrowest

cross section,

From Equation (F-25),

(1+95)
t1)p, ¥

Y

Yg s

From Equation (F-24),

Y b
) y, (_ys+1)(1+ )ys
A R ) Pe
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The flow field near the sonic line in the throat of a nozzle is thus
determined by the following relationships:

- 2
(y +1)a
ulx,y)= ex+ N - S yz' (F-28)
2(1+8)
- 2 - 2 3
(Y. +1) e " x Y +1) " a
vix,y) = &y 4 ‘g Y3 (F-29)
(1 +3) 2(1+3)(3+d)
e . Y E&+1)(1+b)ys

2(3+d) o (F-30)

\/ (1 +3)
@z [— (F-31)
(gt 1) pg Vs

where Ve and pg are geometric properties of the nozzle,

By using the modified specific heat ratio and Mach number defined
for gas-particle flow under constant lag with linear velocity gradient and
no phase change, the above equations can be used to determine the two-

dimensional or axisymmetric flow of a gas-particle systermn in transonic
flow,

G ey)=a  (1+u) (F-32)
~ %

vix,y) =a v (F-33)

* ATl —

a =
_— 1 (F-34)
( Yg +1)
Page 8
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_1
(E) ¢ %

(]
[}

4
(E) Z o~

<
1

where E and Vg are defined in Appendix of this report,

Page 9
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DERIVATION OF THE FINITE-DIFFERENCE EQUATIONS

Seven total differential equations were derived that are valid along the four
characteristic curves, Because of the nonlinear nature of these equations,
numerical techniques had to be used to obtain a solution. The seven compatibility
equations were put into finite-difference form and are presented in this .appendix.
The remaining equations necessary to carry out the numerical solution by use of

a high-speed digital computer were also put into a form suitable for computation.

Three equations for particle properties were derived for a constant par-
ticle size. To account for the possibility of more than one particle size or
species, six discrete particles were allowed for in the numerical solution, This
was accomplished by considering the streamline of each additional particle as an
additional characteristic curve and by applying the particle compatibility equations

independently for each particle along its streamline,

The equations were put into a form suitable for calculation of an interior
point in the flow field, For special points, such as the nozzle axis, the nozzle
wall, the limiting particle streamline, and a free boundary, the same equatioﬁs
apply; but the procedure for obtaining a solution must be modified, The character-
istic net for such an interior point is bounded by the initial data line and the two
Mach lines, as illustrated in Figure G-1,

Page 1
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i

Initial Data Curve

Figure G-1. Interior-Point Characteristic Net

In Figure G-1, functions evaluated along gas Mach lines are designated by sub-
scripts I and II, corresponding to right and left running Mach lines, respectively;
and functions evaluated along gas and particle streamlines are designated by G

(gas) and s (solid), respectively,

Alceng right and left running Mach lines, the characteristic and compatibility

equations are:

2 /. 2

dy u v 4+ a M™ -1

™ot J—gz - {I, -3 10, +) (G-1)

u -a
g
6 6
(u_dy-v_dx) [ (Ap_B)dx-u_dP ] +a? [ Z{App[ {u_-u_ldy-(v_-v )dx]} dx -
g Vg 4P g g L g P’ g 'p

(G-2)

v
+ Pg {vgdug-ugdvg-o'y—ai(ugdy-vgdx') } dx + d.Pgdy ] =0
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To integrate these equations, all properties were assumed to be constant at the
average value of the property along the line of integration. Equations G-1 and

G-2 then became

IV &3
_ﬁ.%) Lt —3—&_ — (I, -) (11, +) (G-3)
ug - a

= G'4
MAP8+QAug+RAvg ) ( )

where the bar denotes average values, and

Z =y RT,
2% Yg& g
-2 =2
__2-(11 +V)
- ~2
a

R = -a

- - 6 6
s ={UY _p3:3 %%k -k Y(45.B) -3 Zi;[ A, { (@8 y - (vg-vpmx} ]}Ax

g
T
.9 ®
A= 5 £
meb1YT
PP
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2 2

B=(§‘g-1)[<6g-ﬁp)

- c
c-E pe
T Pr
Yg = f (?g) and E1:)g = f (-"[-‘g)
f = f (Re) and g =g {Re)

2r_p
Re = P& T -5V +(v -v)°
- g p g P

Hg
Pr = Constant
— - a
hg = HoTg

where Ko and ¢ are constants,

P =p RT
4 g g

Since Equation (G-~4) is valid along both Mach lines, two

relating AP _, A ug: and Avg were obtained:

M, AP

I gl + QI A + Ry Ang

gl

Au
My 8Py +9Qp gll +Ryplvoq;

Page 4

= =2 - =
+(7, -V 4 g C(I‘p-l‘g)]

Tabulated

equations

if
wn

S.
il

(G-5)
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Along the gas streamlines, the characteristic and compatibility
equations are

6
pg [ g du  +vdv | +dp, 12;1{ Ap, [(ug-up)dx + (vg-vp)dy] } (G-9)
dP d b ApBdx (G-10)
I

1=

v
(_A_A}: - & (G-11)
G u
g
APG+ UG Aug +VGAv z DG (G-12)
1
APgG = —; APgG +Tg (G-13)
U= Pgl
vV = Pg vg

6

- [
= - ry -8 A x
TG Z{APPB ( ~T% )}
i=1 g 88
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Along the particle streamlines, the characteristic and compatibility

equations for each particle are

1)

A - d
(vg vp) y

2

In integrated form, these equations are

v
= P
u

Page 6

(G-14)

(G-15)

(G-16)

(G-17)

(G-18)

(G-19)
(G-20)

(G-21)
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The particle-stream function equation, when solved for pp’ becomes

dy

p = ._(_a._-L_3
P -
gludy - v, x)

P

In integrated form, this equation becomes

where, for

=0,

[

Pos = WQZ 'XPI - Ly Ppt ~ L, Pp2

L, F L))
iy - yy) - Vp dxy - %) }

Gp (Vg - Y,) - ;p (x4 - x,)) ]

\yp4 =‘sz + Lz (sz + Pp4)

two-dimensional flow,

o’lzo'zzl

and, for axisymmetric flow,

Ul =é-(y1. + y4)

g, = -i-(yz tyy)
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Equations G-6, G-7, and G-12, relating the gas pressure and velocity

components, can be solved for these properties at the intersection of the Mach

lines to give

L M) Ry My Vo) - (Z2-MpX) (Ri-M; Vo _
g4 — (G-23)
(Q; -M; U (Ryp -Mp V) - (Qp -My V) (Ry -M; V()

9 -MT) (Z-My X) - (Qpy -M V) (T - MyX) | .
= (G-24)

v
g4
(Qp-MUg) (Ryy - My V) - (Qp - MpV) (R -M V)

P :x-UGug4-vag4+P (G-25)

g4 g3

X:DG+vGug3+vag3

Y =S1 -I-MI (Pgl - Pg3) +QI ugl +RI vg1

23Syt My Py - Peg) +Qpup + Ry v,

The gas density at point 4 from Equation G-13 is given by

(P_, -P_.)
= 84 83 .
Pga = Pg3 + + Tqg (G-26)
Y RT
g g
where TG is defined above.
|
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Equations (G-19), (G-20), and (G-21) were solved for the particle velocity

componerts and enthalpy at point 4 to give

up4 = ups + KS Ax (G-27)
vp4 = vps + FS Ay (G-28)
hp4 = hps + C’s Ax (G-29)

The particle density at point 4, pp4, is given by Equation (G-22).
Thus, the original system of characteristic total-differential equations

has been put into finite-difference form, and expressions for all the flow

properties at point 4 have been obtained in a form suitable for computation.
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NUMERICAL-SOLUTION PROCEDURE FOR COMPUTER PROGRAM

I GENERAL

The equations governing a gas-particle system have been derived, the
characteristic equations have been determined, and the characteristic equations
put into finitewdifference form in the preceding appendixes., In this appendix, the
use of these equations is demonstrated for determining the flow properties at an
interior point in the flow field: any general point that is not on a solid or free
boundary, on the nozzle axis, or in the region between the limiting particle steam-
line and the nozzle wall. For these, slight modifications to the procedure are

necessary.

This procedure has been programed for the IBM 7090 computer. The com-

puter program follows the solution procedure outlined in this section.

The units of the physical parameters appearing in the solution are shown in

Table H-1. The given data and the solution are both expressed in these units,

Two types of data are needed for this solution: general and specific. The
general data (Table H-2) pertains to the entire nozzle calculation, and the
specific data (Table H-3) pertain only to the flow properties at the point under

consideration. The properties found at point 4 consist of:

1. Location of point 4 (x and y)
2. Gas properties; the same as the initial data
3. Particle properties; the same as the initial data.

The numerical solution is based on the characteristic net shown in Figure
H-1.

II. SOLUTION PROCEDURE

The detailed solution procedure for the location of point 4 and the calcula-
tion of the flow properties at that point is in the following sequence:
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TABLE H- 1

UNITS OF PHYSICAL PARAMETERS

specific heat at constant pressure
specific heat ratio of the gas

ratio of CD to CD for Stokes' flow

ratio of Nu to Nu for Stokes' flow

particle enthalpy

particle density per unit volume of particle
gas static pressure

Prandtl number

particle radius, based on spherical particles
gas constant

Reynolds number

gas static temperature

particle static temperature

axial gas velocity component

axial particle velocity component

normal or radial gas velocity component
normal or radial particle velocity component
axial coordinate

normal coordinate

component of gas viscosity expression

gas viscosity

coefficient of gas viscosity expression

gas density

particle density per unit volume of gas

Page 2

Btu/lbm-°R

dimensionless

dimensionless
dimensionless
Btu/ibm

1bm /1t

1bf /in. 2
dimensionless
micron
Btu/lbm-°R
dimensior_lles ]
°R

°R

ft/sec

ft/sec

ft/sec

ft/sec

ft

ft
dimensionless
lbm /ft-sec
1bm /ft-sec-( °R)a
1bm /£t
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TABLE H-2

GENERAL INITIAL DATA

Two-dimensional or axisymmetric flow specification (4= 0 ord= 1)
Number of particles and the density mp, and radius rp of each
Tabulated values of f as a function of Re

Tabulated values of g as a function of Re

Tabulated values of Yg' R, cpg' p.g. and Pr as a function of Tg
Tabulated values of Tp as a function of hp for each particle species
The solidfication temperature, Tpm’ of each particle species

The iteration accuracy criteria, Kand L
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TABLE H-3

SPECIFIC INITIAL DATA

. (given at both points 1 and 2)

Location of points {1 and 2, { x and y).

Gas properties at points { and 2:

axial velocity component

normal velocity component

density

pressure

temperature

Particle properties for each particle at points 1 and 2:

axial velocity component

normal velocity component

density

enthalpy
- temperature

- stream function
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Right Mach Line 11

Particle Streamlines

Point to be determined

Gas Stream-
line

\ Left Mach Line

Initial Data
Line

Figure H-1, 'Numerical-Solution Characteristic Net
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1, Determine the location of points | and 2, and the gas and particle
properties at points 1 and 2:
4 u_o | [ u u
gl’ “g2 pt’ “p2
VvV ,, V V o, V
(xgs ¥y) g1’ g2 pl’ "p2
(xzo YZ) Pgl’ ng pp'i' sz
P+ Pga Bp1 Bpp
Tg1 ) ng Tp.l’ sz
VooV,
2, Determine T m 2t the midpoint of line 1-2, and, from tables of Yg
and C__vs T , determine ¢__ and y_ at this temperature. This ¢__ and y_ are
pPg Pg 4 pg g

then considered as the constant values of ¢ g and Yg for the entire net.

3. Calculateu_, v_, u_, v_, and y_ at the midpoint of line 1-2,
g & P P 8

1
Pm 7—(P1 +P2)

wheré P is any of the above properties, Calculate the gas viscosity at the mid-

point of line 1-2.

a a
Hem = Ho Tgm
4, Calculate Re for each of the 6 particles at the midpoint of Line 1-2,
. - e
Re = 6.5602 x 10~% _8™ r‘\/(u w Paiv v )P
""gm P gm pm gm pm

From tabulated values of f and g vs Re, f and g for each of the particles may be

determined, Calculate A and C of the particles.
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11

Momf
A= 4, 1806 x 10 a‘g?‘z
PP

3 ¢ m

C=25x 10 -%- %%..

5. In the following steps, note that the value of any flow property P at

point i on the initial data line {-2 can be found as follows:

6. Locate point 4, For the first overall approximation of point 4, base
the location on properties at points 1 and 2 only. For subsequent approximations,

base the location on the average of properties at points 1, 2, and 4,

2 2 _ .
a, = 32,139 YgRTg1 a,; = 32,139 Yg Rng
1 1
2 2 |~ 2 2 (=
u +v 2 u + v . 2
= 1 { 2 _ 2 2
M, =Bl B M- 82 T2
a a
1 2
0 , =tan '1(v /u_,) g _, = tan ~1(v /u_,)
gl gl gl g2 g2 g2
a_, = sin -1(1/M ) @ , = sin 'l(l/M )
gl { g2 = 2
Ky = 05y - 9y) bz = 62 + 2p)
For the first overall trial on point 4, set Hig = By and Hig = Hipz-

On subsequent trials, Hig and H114 4 will be known from flow properties at point 4,
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Ty = (kg + =
14 =7 (Bpg tH1g) oy = -3 (M i)
m,, =tan [, 1-—11?_4=tan'ﬁ24
. - xzm24-x1m14+(y1-y2)
4~ — —
(mpy - myy) .
Vg =Yy t My, (X4 - %)
7. Locate point 3. For the first overall trial for point 4, }'LG4 = é—

(“112 + pn.). On subsequent trials, HG4 will be known from flow properties at

point 4. Calculate "LGS’ During the first overall trial on point 4, assume
xg = %— (x1 + xz) as a first approximation. During subsequent overall trials on
point 3, assume that X3 is the final value of X5 from the previous overall trial on

point 4.

-1 -1
Bgy = tan (vg3/ug3) Koy = tan (vg4/ug4)

- 1 -
Hayg = 7 (g3 t Bgq) m,, =tan fla,

Pass a line through point 4 with the average slope 534 and determine a new

location for point 3 as the intersection of this line with 1{-2, Note that .

m,, = (yg - yz)/(x1 - %,) is constant.
m, X, - My, X, +(yy - Yp)
(myp - m3y)

x3=

Y3 =¥y + My, (x5 - ;)
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Repeat the above steps, obtaining even more refined values of X3 and VAT each

time using the last location of point 3 to calculate V~G3 until

<K

Distance [3(n + 1) -3(n)l
Distance [1-2] .

where K is an accuracy criterion and n denotes the nth trial, When the above

equality is satisfied, point 3 is located.

8. In all the equations which follow, all flow properties must be
expressed as average values. This is accomplished by replacing each property,
P, by the relationship

1
F=g (P +Pyy)
where Pi is the value of the property at point i and Pi4 is the value of the property
at point 4 where P is evaluated along line i-4, On the first over-all trial on point
4, all values of Pi4 are set equal to Pi. On subsequent trials, actual values of
properties at point 4 will be used,

9. Set two-dimensional or axisymmetric flow parameters,
1f = 0.0, If = 1.0,
dY o'Y
SIGK = 0.0 SIGK =1,0
SIG1 =1.0 SIG1 = (yl + y4)
SIG2 =1.0

SIG2 = (y, + v,)

SIG3 SIG3 = {y, +v,)

"
[
(=]

10, Locate point 5 and calculate Ppd and ‘1’94

1
L, = g SIGt {[vpl + va] (x, - x,)+ [upl + upH] (yq - ‘/1)}

3
_ . - f
LZ = -8-— S1G2 {[sz + VP24J (x4 = xz) + Lupl + up24] (YZ = Y4?]

Page 9



Report No, 0162-01TN-16
Appendix H

[sz'wpl'l“i Ppl'LZ Pp2 ]

Pp4(1)
(L1 + LZ)
Wp4(1) = ‘sz L2 [ Pp2 + Pp4 ]
V]
] v

By use of the above steps, point 5 is located and pp4 and Wp4 are calculated.

This procedure must be repeated for each particle.
11. Evaluate the gas properties at point 4:

= 1
U= g (pg3+Pgag) U3+ Y3y

-1
V = g (pg3 * Pg3g) Vg3 ¥ Vg3q)

Kp= g [ (g +ugua) g - vy) = (vgy + Vi) (g - x)]

Ky -7 [ (g2 * 9gaa) 74 - ¥2) - (Vga * Vgaa) (g - %) ]

_ i
M, = [ 16,069 Y R (T q + Tgyg) Iy - vy) - 7 ¥q (ugy +ugl4)]

_ i
My = [ 16,069 ng (ng "ng4) vy - ¥,) - an (ugZ + ugz4):|
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1" 4,0174 v gR ('I’81 + T814) (pgi + p814) (vg1 + ng) (x4 - xl)

D
i

4,0174 ng (ng + Tg24) (pgz + pg24) (vg2 + vg24) (x4 - xz)

Ry =-4.0174 y R (T 4 + T 4 y) (poy + Pg1ailug tusiy) (xy - %)

Rpyp ==4. 0174 Y R (T ) + T ) (Pga * Pg2alligs * Ugay) (x4 - X,)
6
D =-14 Z A( + )[(u +u Uz “Upag) (x4 - x5)
T L Pp3 7 Pp34) | g3 TUg34 Up3 “Up3q) X4 " X3
1=

+ (Vg3 + Vo34 - Vo3 - Vpag) (Vg - Vs’] }

2

o
"

(y_-1)
2
1 -5_'[ (g + Ugyq = By ~Vp1a)” * (Vi tVoig = Vg - Vp14)

+1.33333C (T + T 1, - Ty - Tgm)]

BII = [(ugz + Yg24 " Yp2 - up24) + (vgz + Vg2a " Vp2 - vpl4)

-T

g2 ~ Tg2d) ]

+1,33333 C ('I‘PZ + sz4

(v, -1)
) 2 2
Bg= —§— [ (g3 + Ug3g - U3 = Upag) "+ (Ves ¥ Vogg = Voa - Vogy)

+1.33333 C T3 + Tppy - Ty - Tyay) ]
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8.
Sy = {&g'l%(%li (Pot * Pg1a) (Vo ¥ Vgig) YR (Toq + Ty ) Ky

6
o - T +T
Z [ ABilp + 0y 4) ] £.0174 Y R(T 4 T )X

6
Z Alppy *Pp14) {(ugi VR R YPUL VIR £}
i=1

- (Vg1 * Vg1a "V pt " Vp1a) (g "1)}} e
{8. OMKSIG  (pgy + pgag) (Vgp + Vgaa) YgR (Typ ¢ Te2d) ¥
6

1 -4.0174y R(T .+ T
-z an [ABn(sz“’pu)] 4.0174 v, R (T,

i=1

1o

A (ppa +Ppag) { (ugp +Ugaq = Upp = Unpg) (Vg - ¥,)

i=1

- Vg2 + Vga4 ~ Vp2 " Vpaa) (x4 - "z)}} (xq - %)

Y = SI + 4, 628 M.I (Pgi - Pg3) + QIugl + RIvgi

Z = SII + 4,-628 MII (sz Pg3) + QIIugZ + R'IIng

X=D+ng3+va3

) (x4
- 2.1608 x 10 4[ ArEM 534 ) ] Z [aBg (Pp3*Pp3e) |
Yg(Fg3tPg3e) (“g +“g34 i=1

DENOM =[(@-MT) Ry - MyD) - (@) - M?) (R, - M¥) ]
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(Y - M{X) (R - MHV) - (Z - MX) (R - MIV')

g4 T [ DENOM

W ]
DENOM
_ -4 -
Pg4— Pg3+2.160x10 (X-ng4-va4)
288.0 (PE - P 3)
Pa= P2t T+ [ £ ]
g4 g3 VgR(T 3 + Tpay) |
144 P 4
Rpg4

Evaluate the particle properties at point 4,

(u gt U5 -u_,)
§5 p45 p5
K=A [ 45 * up.',T J

T:-=A [ vga * Vgs 'VP45'vp5)]
(V 45+Vp5)

T- 2.6667x 1075 ac [ Tpas * Tps " Tga - Tgs)
(upgs + upg)
Upg = up5+x (x4 -xs)
vp4 = vp5+§(y4 - ys)
hp4 = hp5+6(x4 - x5)
Tog = £(h,)
Page 13
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13, Thus, the location of point 4, and all the flow properties at point 4,
are known approximately. To improve the accuracy of the approximation,
point 4 must be relocated, based on the average values of flow properties, by
using the last-determined values of the flow properties at point 4. Then, all

the flow properties can be recalculated by using these same average values.

14. Repeat step 6 to relocate point 4. Repeat step 7 to relocate point 3.
Repeat step 8 to set all Pi4 = P4 as just determined. Repeat step 9 to recal-
culate SIG 1, SIG 2, and SIG 3. Repeat step 10 to recalculate Ppa’ \Vp4’

and to locate point 5. Repeat step 11 to recalculate gas properties at point 4.
Repeat step 12 to recalculate particle properties at point 4. Thus, point 4 is
relocated, and all the flow properties at point 4 have been recalculated. Apply

the following convergence test on all flow properties:

P (n+1) - Pin)
B+ 1) s L.

When the test has been satisfied by all flow properties, the solution for the loca-
tion and properties at point 4 is complete. If the solution does not converge, the

entire procedure must be repeated until convergence is achieved,
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EXAMPLE CALCULATION FOR VERIFI ZCATION OF COMPUTER PROGRAM

To check the general validity of bothen the thheory and accuracy of the computer
program, a numerical example was calculllated for a general interior point. A
solid propellant that contains aluminum we=sschosen. The exhaust gases contained

0.48 1b of aluminum oxide per lb of gas.

Particle properties were defined liswtingsix discrete particle sizes (TableI-1).

The transport properties of the gas phase atchaxmber stagnation conditions were
defined and are given in Table I-2. Tg' Y' and C’pg’ are given as functions of gas
temperature in Table I-3. The temperatu—xe-enthalpy relationship for solid and
liquid aluminum oxide is shown in Table [~——4withh other particle properties needed
for the solution., The f and g parametersa _siunctions of Reynolds number were ob-
tained from current stud_i.es and are presermtedira Table I-5. Values listed in this
table may be considered ag permanent valLaes of £ and g for all subsequent work,

Units of physical parameters are shownin Table I-6,

The general and specific data, outlinmedin Appendix H, are shown in Tables
1-7 and -8, respecitvely., The example cileciition is based on the characteristic net
shown in Figure I-1 and the location and prxoperti es for the general interior point 4

are given in Table 1-9,

The gas viscosity for several propellllints was found to satisfy the relationship.

= T QX7
Mg = B, T, OO

Hence, if u.g is known at any temperature, uo may be determined. Usually ,p.g is

known at the flame temperature as a result— o the rmochemical calculations.
In comparison of results, ug and v_cecrea sed, and pg and Pg remained

about the same, and ’1‘g increased, whichi=simo st opposite to the trend expected

in a perfect-gas flow, However, in the exa:_mple calculation'up and o increased,
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and Pp and hp decreased, which was the expected trend. The apparent inconsist-
encies in the gas properties are due to the fact that this problem was artificially
conceived. An actual problem beginning at the supersonic starting line should

behave in a more normal manner,

The example calculation appears to verify the theory developed in the pre-

ceeding appendixes and authenticate the correctness of the comp&ter program,
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3

Initial Data
Curve

Figure l-1{

Characteristic Net and Point 4
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Table I-1

PARTICLE PROPERTIES
Chemical Species = A1203

Mass flow rate of particles _ 0. 46

Mass flow rate of gas

Particle Radii, microns

rpl = 0.45
rpZ =0,72
rp3 =0.90
rp4 =1,15
rp5 =1,42
rp6 =1,75
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Table I-2

GAS TRANSPORT PROPERTIES

Pressure, Pg e 1, 000.0 psia
Temperature, Tg 6,650.0 °R
Molecular Weight (Gas) 20.99
Gas Constant, R 72.8 ft'}bf
Specific Heat Ratio, Y g 1.20
s s Btu
Constant Pressure Specific Heat, Cpg 0.4776 T
. . lbm
VISCOSlty, 1) g 0.2416 TF
Density, p 0.2940 _bm
g £t3
Prandtl Number, Pr 0.4996
i Btu
Thermal Conductivity, kg 0.2307 TORK
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Table I-3

Y g AND Cpg VS TEMPERATURE
Y Btu
T , °R C__, Toa"E
g & pPg m-
200 1.366 0.2860
500 1.365 0.2870
t, 000 1.344 0.3130
2,000 1.297 0.3730
3,000 1,257 0.4210
4, 000 1.244 0.4520
5, 000 1.228 0.4700
6, 000 1.212 0.4750
6,650 1.200 0.4776
Page 6
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-42,
-40.
.62
37.
80.
175.
276.
435,
598.
874.
1,051,

26
89

90
80

7
4

PROPERTIES OF ALUMINUM OXIDE

T
Pm
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Table I-4

=4,172.4 °R

- Btu
hps =1, 051.4_15r_n_

- Btu
hpl =1,695.5 T

Solid

T’ ’R.

180
540
720
900
1,260
1,620
2,160
2,700
3,600

4,172.4

1,695.5
1,745.6
1,807.2
3,043.0
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Table 1-5

f AND g PARAMETERS AS FUNCTIONS OF REYNOLDS NUMBER *

Re f Re g
0 - 1.0000 0 i.0000 .
1 1.0000 3 1.0000
4 1.4167 10 1.3750
10 1.7917 20 1.7000
40 3.1667 30 2.0000
70 4.0800 40 2.1500
100 4,7917 70 2.8000
200 6.6667 100 4.9300
500 12.1000
1,000 16.6670
For Re 2 1,000, For Re 2 100,
f=0.016667 Re g = 0.185 (Rej - ©C

* f data taken from Boundary Layer Theory by Schlichting

g data taken from Heat Transmission by McAdams
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TABLE I-6

UNITS OF PHYSICAL PARAMETERS

specific heat at constant pressure

specific heat ratio of the gas

ratio of Nu to Nu for Stokes' flow

ratio of Nu to Nu for Stokes' flow

particle enthalpy

particle density per unit volume of particle
gas static pressure

Prandtl number

particle radius, based on spherical particles
gas constant

Reynolds number

gas static temperature

particle static temperature

axial gas velocity component

axial particle velocity component

normal or radial gas velocity component
normal or radial particle velocity component

axial coordinate

component of gas viscosity expression
gas viscosity

coefficient of gas viscosity expression
gas density

particle density per unit volume of gas

Page 9

Btu/lbm-°R
dimensionless
dimensionless
dimensionless
Btu/lbm
lbm/cu ft
1bf/sq in,
dimensionless
micron
Btu/lbm- °R
dimensionless
‘R

*R

ft/sec

ft/sec

'ft/sec

ft/sec

ft
dimensionless
lbm/ft-sec
lbm/ft-sec(°R)®
1bm/cu ft

1bm/cu ft
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TABLE 1-7

GENERAL DATA

Axisymmetric flow, cy =1

Six aluminum-oxide particles, m_ =247.61, with the radii given in
Table I-1. ' P

f is given in Table I-5

g is given in Table I-5

Y 1is given in Table I-3

Cpg is given in Table I-3

T_vs h_is given in Table I-4
P p

T =4,172.4
pm

Pr = 0.4996
by =6.6x 10-8 and ¢ = 0,787

R=72.8
K=L=0.0001
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TABLE ]-8

SPECIFIC DATA AT INITIAL POINTS { AND 2%

x, =1.00000 x, = 1,02500
Yy = 0.60000 Y, = 0.50000
Ugy = 8,960.0 ugz = 9,060.0
Vgt = 2,460.0 Vg2 = 2,370.0
Pgt = 0.00022444 Pga = 0.00018289
Pgi, = 0,45500 Pﬂ{,2 = 0,36800
Tg1=4,010.0 Tg2 = 3,980.0
Upy (1) = 8,050 upp (1) = 8,100
Vo1 (1) = 2, 140 Vp2 (1) = 2,200
Ppy (1) = 0.0000195 Pr2 (1) = 0.0000160
hoy (1) = 1,035.2 hp‘2 (1) = 1,029, 1
To1(1) = 4,120.0 T2 (1) = 4,100.0
Uy (2) = 7,650 Us2 (2) = 7,710
Vot (2) = 1,880 vp2 (2) = 1,940
Ppy (2) = 0.0000862 Ppz (2) = 0.0000710
hp1 (2) =1,054.0 hp‘2 (2) =1,052.0
Toy (2) =4,172.4 To2 (2) = 4,172, 4
us. (3) = 7,220 usz (3) = 7,280
vp1 (3) = 1,640 vpz (3) = 1,700
Ppy (3) = 0.0000502 Pp2 (3) = 0.0000412
an1 (3) =1,300.0 ho2 (3) =1,295.0
Tp1 (3)=4,172. 4 To2 (3)=4,172.4
Page 11




ug (4) = 6,790
vy (4) = 1,420
ppy (4) = 0.0000302
hoy (4) = 1,696.0

Tpi (4) = 4,173.9

(5) = 6,380

upl
Vpi (5) = 1,225

Pot (5) = 0.0000211
hpi (5) =1,697.3

T 5) =4,177.7

Pi(

upt (6) = 5,930
Vot (6) = 1,030
Pp1 (6) = 0.0000118
h,y (6)

To1 (6) = 4,420.0

1,779.8

)
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TABLE I-8 (cont.)

(4) = 0.0000249
ho, (4)=1,694.5
Top (4 =4 172.4

u, (5) = 6,420
vz (5) = 1,265

Ppz ¢5) = 0.0000173
b, (5) = 1,696.0

sz (5) = 4,173.9

U2 (6) = 5,970

Vpz (6) = 1,070

Pp2 (6) = 0.0000n97
b2 (6) =1,773.0
Tz (6) = 4,400.0

* The location and properties of point 4 (Figure 1-1 and Table I-8) for the above

case are given in Table 1-9 in the format printed out by the computer,
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